
ContentsContents

 Stream Analytics Documentation
 Overview

 What is Stream Analytics?
 End-to-end solution patterns

 Quickstarts
 Create a job - Azure portal
 Create a job - PowerShell
 Create a job - Visual Studio
 Create a job - Visual Studio Code

 Tutorials
 1 - Create / manage a job
 2 - Run Azure Functions
 3 - Run a JavaScript UDF
 4 - Deploy with CI/CD in Azure Pipelines
 5 - Run a C# UDF
 6 - Create custom .NET deserializer

 Samples
 Code samples

 Concepts
 Choose a streaming analytics technology
 Choose a job development tool
 Input types for a job

 Inputs overview
 Streaming data inputs
 Reference data inputs
 Read inputs in any format using custom deserializers

 Output types for a job
 Outputs overview
 Output to Cosmos DB

file:///T:/yyfp/stream-analytics/index.yml
https://azure.microsoft.com/resources/samples/

 Output to Azure SQL DB
 Blob custom path patterns

 User-defined functions
 Machine learning UDF
 C# UDF

 Optimize your Stream Analytics job
 Understand and adjust Streaming Units
 Improve query performance
 Repartition your input
 Increase throughput of your job

 States of a job
 Window functions
 Geospatial functions
 Compatibility level
 Common query patterns
 Parse JSON and AVRO data
 Time handling considerations
 Checkpoint and replay
 Error policy

 How-to-guides
 Manage

 Update credentials
 Configure event ordering policies
 Configure alerts
 Start a job
 Test a job
 View results on a dashboard
 Stop or delete a job
 Copy or back up a job
 Pair jobs for reliability
 Authenticate with managed identity - ADLS Gen 1 output
 Use SQL reference data

 Authenticate with managed identity - Blob output
 Authenticate with managed identity - Power BI
 Encrypt your data

 Build solutions
 Twitter sentiment analysis
 Real-time fraud detection
 Run jobs on IoT Edge
 Toll booth sensor data analysis
 Run a JavaScript UDA
 High-frequency trading
 Process IoT streaming data
 Threshold-based rules
 Process Kafka events
 Process Event Hubs data
 Process Azure SQL Database
 Geospatial scenarios

 Monitor
 Monitor jobs- Azure portal
 Monitor jobs- PowerShell
 Monitor jobs- Azure .NET SDK
 Monitor jobs- Visual Studio

 Automate
 Using .NET SDK
 Using Azure PowerShell
 Using API for IoT Edge jobs
 Export and deploy with Azure Resource Manager

 Visual Studio
 Install tools
 Test locally with sample data
 Test locally with live data
 View jobs in Visual Studio
 Debug queries using job diagram

https://github.com/azure/azure-stream-analytics/tree/master/samples/asaoneclick

 Develop an edge job
 Set up CI/CD pipeline

 Visual Studio Code
 Test locally with sample data
 Test locally with live data
 Set up CI/CD pipeline
 Explore jobs
 JobConfig.json fields

 Troubleshoot
 Input
 Output
 Query logic
 Activity and diagnostic logs
 Data errors

 Integrate with machine learning
 Sentiment analysis with ML models
 Anomaly detection
 Use REST APIs

 Debug using job diagram
 Scale with ML functions

 Stream Analytics Query Language
 Stream Analytics Query Language overview
 Built-in Functions

 Built-in Functions Overview
 Aggregate Functions

 Aggregate Functions Overview
 AVG
 COUNT
 Collect
 CollectTOP
 MAX
 MIN

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://docs.microsoft.com/stream-analytics-query/built-in-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/aggregate-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/avg-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/count-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/collect-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/collecttop-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/max-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/min-azure-stream-analytics

 Percentile_Cont
 Percentile_Disc
 STDEV
 STDEVP
 SUM
 TopOne
 VAR
 VARP

 Analytic Functions
 Analytic Functions Overview
 AnomalyDetection_SpikeAndDip
 AnomalyDetection_ChangePoint
 ISFIRST
 LAG
 LAST

 Array Functions
 Array Functions Overview
 GetArrayLength
 GetArrayElement
 GetArrayElements

 Conversion Functions
 Conversion Functions Overview
 CAST
 GetType
 TRY_CAST

 Date and Time Functions
 Date and Time Functions Overview
 DATEADD
 DATEDIFF
 DATENAME
 DATEPART
 DATETIMEFROMPARTS

https://docs.microsoft.com/stream-analytics-query/percentile-cont-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/percentile-disc-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/stdev-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/stdevp-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/sum-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/topone-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/var-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/varp-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/analytic-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/anomalydetection-spikeanddip-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/anomalydetection-changepoint-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/isfirst-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/lag-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/last-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/array-functions-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarraylength-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarrayelement-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarrayelements-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/conversion-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/cast-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/gettype-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/try-cast-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/date-and-time-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/dateadd-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/datediff-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/datename-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/datepart-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/datetimefromparts-azure-stream-analytics

 DAY
 MONTH
 YEAR

 GeoSpatial Functions
 GeoSpatial Functions Overview
 CreateLineString
 CreatePoint
 CreatePolygon
 ST_DISTANCE
 ST_OVERLAPS
 ST_INTERSECTS
 ST_WITHIN

 Input Metadata Functions
 Input Metadata Functions Overview
 GetMetadataPropertyValue

 Mathematical Functions
 Mathematical Functions Overview
 ABS
 CEILING
 EXP
 FLOOR
 POWER
 ROUND
 SIGN
 SQUARE
 SQRT

 Record Functions
 Record Functions Overview
 GetRecordProperties
 GetRecordPropertyValue

 String Functions
 String Functions Overview

https://docs.microsoft.com/stream-analytics-query/day-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/month-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/year-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/geospatial-functions
https://docs.microsoft.com/stream-analytics-query/createlinestring
https://docs.microsoft.com/stream-analytics-query/createpoint
https://docs.microsoft.com/stream-analytics-query/createpolygon
https://docs.microsoft.com/stream-analytics-query/st-distance
https://docs.microsoft.com/stream-analytics-query/st-overlaps
https://docs.microsoft.com/stream-analytics-query/st-intersects
https://docs.microsoft.com/stream-analytics-query/st-within
https://docs.microsoft.com/stream-analytics-query/input-metadata-functions
https://docs.microsoft.com/stream-analytics-query/getmetadatapropertyvalue
https://docs.microsoft.com/stream-analytics-query/mathematical-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/abs-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/ceiling-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/exp-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/floor-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/power-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/round-azure-stream-analytics.md
https://docs.microsoft.com/stream-analytics-query/sign-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/square-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/sqrt-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/record-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getrecordproperties-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getrecordpropertyvalue-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/string-functions-azure-stream-analytics

 CHARINDEX
 CONCAT
 LEN
 LOWER
 PATINDEX
 REGEXMATCH
 REPLACE
 SUBSTRING
 UPPER

 Windowing Functions
 Windowing Functions Overview
 Hopping Window
 Session Window
 Sliding Window
 Tumbling Window
 Aggregate Windowing functions

 Data Types
 Data Types Overview
 Parsing JSON and AVRO data

 Query Language Elements
 Query Language Elements Overview
 APPLY
 CASE
 COALESCE
 CREATE TABLE
 FROM
 GROUP BY
 HAVING
 INTO
 JOIN
 MATCH_RECOGNIZE
 Reference Data JOIN

https://docs.microsoft.com/stream-analytics-query/charindex-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/concat-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/len-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/lower-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/patindex-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/regexmatch-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/replace-azure-stream-analytics.md
https://docs.microsoft.com/stream-analytics-query/substring-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/upper-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/windowing-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/hopping-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/session-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/sliding-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/tumbling-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/windows-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/data-types-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/query-language-elements-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/case-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/coalesce-azure-stream-analytics.md
https://docs.microsoft.com/stream-analytics-query/create-table-stream-analytics
https://docs.microsoft.com/stream-analytics-query/from-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/group-by-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/having-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/match-recognize-stream-analytics
https://docs.microsoft.com/stream-analytics-query/reference-data-join-azure-stream-analytics

 SELECT
 UNION
 WHERE
 WITH

 Time Management
 Time Management Overview
 System.Timestamp
 TIMESTAMP BY
 Time Skew Policies

 Event Delivery Guarantees
 Reference

 Azure PowerShell
 .NET
 REST
 Resource Manager template

 Resources
 Stream Analytics previews
 Azure Roadmap
 Blog
 Feedback forum
 Forum
 Pricing
 Pricing calculator
 Service updates
 Stack Overflow
 Videos
 Customer case studies
 Whitepaper - Real-time event processing

https://docs.microsoft.com/stream-analytics-query/select-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/union-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/where-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/with-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/time-management-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/system-timestamp-stream-analytics
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/time-skew-policies-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/event-delivery-guarantees-azure-stream-analytics
https://docs.microsoft.com/powershell/module/az.streamanalytics
https://docs.microsoft.com/dotnet/api/microsoft.azure.management.streamanalytics
https://docs.microsoft.com/rest/api/streamanalytics
https://docs.microsoft.com/azure/templates/microsoft.streamanalytics/allversions
https://azure.microsoft.com/roadmap/
https://azure.microsoft.com/blog/tag/azure-stream-analytics/
https://feedback.azure.com/forums/270577-azure-stream-analytics
https://social.msdn.microsoft.com/forums/azure/home
https://azure.microsoft.com/pricing/details/stream-analytics/
https://azure.microsoft.com/pricing/calculator/
https://azure.microsoft.com/updates/
https://stackoverflow.com/questions/tagged/azure-stream-analytics
https://azure.microsoft.com/resources/videos/index/
https://azure.microsoft.com/case-studies/

What is Azure Stream Analytics?
6 minutes to read • Edit Online

How does Stream Analytics work?

Azure Stream Analytics is a real-time analytics and complex event-processing engine that is designed to
analyze and process high volumes of fast streaming data from multiple sources simultaneously. Patterns and
relationships can be identified in information extracted from a number of input sources including devices,
sensors, clickstreams, social media feeds, and applications. These patterns can be used to trigger actions and
initiate workflows such creating alerts, feeding information to a reporting tool, or storing transformed data for
later use. Also, Stream Analytics is available on Azure IoT Edge runtime, and supports the same exact language
or syntax as cloud.

The following scenarios are examples of when you can use Azure Stream Analytics:

Analyze real-time telemetry streams from IoT devices
Web logs/clickstream analytics
Geospatial analytics for fleet management and driverless vehicles
Remote monitoring and predictive maintenance of high value assets
Real-time analytics on Point of Sale data for inventory control and anomaly detection

An Azure Stream Analytics job consists of an input, query, and an output. Stream Analytics ingests data from
Azure Event Hubs, Azure IoT Hub, or Azure Blob Storage. The query, which is based on SQL query language,
can be used to easily filter, sort, aggregate, and join streaming data over a period of time. You can also extend
this SQL language with JavaScript and C# user defined functions (UDFs). You can easily adjust the event
ordering options and duration of time windows when preforming aggregation operations through simple
language constructs and/or configurations.

Each job has an output for the transformed data, and you can control what happens in response to the
information you've analyzed. For example, you can:

Send data to services such as Azure Functions, Service Bus Topics or Queues to trigger communications or
custom workflows downstream.
Send data to a Power BI dashboard for real-time dashboarding.
Store data in other Azure storage services to train a machine learning model based on historical data or
perform batch analytics.

The following image shows how data is sent to Stream Analytics, analyzed, and sent for other actions like
storage or presentation:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-introduction.md

Key capabilities and benefits

Ease of getting started

Programmer productivity

Azure Stream Analytics is designed to be easy to use, flexible, reliable, and scalable to any job size. It is available
across multiple Azure regions. The following image illustrates the key capabilities of Azure Stream Analytics:

Azure Stream Analytics is easy to start. It only takes a few clicks to connect to multiple sources and sinks,
creating an end-to-end pipeline. Stream Analytics can connect to Azure Event Hubs and Azure IoT Hub for
streaming data ingestion, as well as Azure Blob storage to ingest historical data. Job input can also include
static or slow-changing reference data from Azure Blob storage or SQL Database that you can join to
streaming data to perform lookup operations.

Stream Analytics can route job output to many storage systems such as Azure Blob storage, Azure SQL
Database, Azure Data Lake Store, and Azure CosmosDB. You can run batch analytics on stored output with
Azure HDInsight, or you can send the output to another service, like Event Hubs for consumption or Power BI
for real-time visualization.

For the entire list of Stream Analytics outputs, see Understand outputs from Azure Stream Analytics.

Azure Stream Analytics uses a simple SQL-based query language that has been augmented with powerful
temporal constraints to analyze data in motion. To define job transformations, you use a simple, declarative
Stream Analytics query language that lets you author complex temporal queries and analytics using simple

https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/data-lake-store/
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/power-bi/
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

Fully managed

Run in the cloud or on the intelligent edge

Low total cost of ownership

Mission-critical ready

ReliabilityReliability

SecuritySecurity

SQL constructs. Because Stream Analytics query language is consistent to the SQL language, familiarity with
SQL is sufficient to start creating jobs. You can also create jobs by using developer tools like Azure PowerShell,
Stream Analytics Visual Studio tools, the Stream Analytics Visual Studio Code extension, or Azure Resource
Manager templates. Using developer tools allow you to develop transformation queries offline and use the
CI/CD pipeline to submit jobs to Azure.

The Stream Analytics query language offers a wide array of functions for analyzing and processing streaming
data. This query language supports simple data manipulation, aggregation functions, and complex geospatial
functions. You can edit queries in the portal and test them using sample data that is extracted from a live
stream.

You can extend the capabilities of the query language by defining and invoking additional functions. You can
define function calls in the Azure Machine Learning to take advantage of Azure Machine Learning solutions,
and integrate JavaScript or C# user-defined functions (UDFs) or user-defined aggregates to perform complex
calculations as part a Stream Analytics query.

Azure Stream Analytics is a fully managed serverless (PaaS) offering on Azure. You don’t have to provision any
hardware or manage clusters to run your jobs. Azure Stream Analytics fully manages your job by setting up
complex compute clusters in the cloud and taking care of the performance tuning necessary to run the job.
Integration with Azure Event Hubs and Azure IoT Hub allows your job to ingest millions of events per second
coming from a number of sources, to include connected devices, clickstreams, and log files. Using the
partitioning feature of Event Hubs, you can partition computations into logical steps, each with the ability to be
further partitioned to increase scalability.

Azure Stream Analytics can run in the cloud, for large-scale analytics, or run on IoT Edge for ultra-low latency
analytics. Azure Stream Analytics uses the same query language on both cloud and the edge, enabling
developers to build truly hybrid architectures for stream processing.

As a cloud service, Stream Analytics is optimized for cost. There are no upfront costs involved - you only pay
for the streaming units you consume, and the amount of data processed. There is no commitment or cluster
provisioning required, and you can scale the job up or down based on your business needs.

Azure Stream Analytics is available across multiple regions worldwide and is designed to run mission-critical
workloads by supporting reliability, security and compliance requirements.

Azure Stream Analytics guarantees exactly-once event processing and at-least-once delivery of events, so
events are never lost. Exactly-once processing is guaranteed with selected output as described in Event Delivery
Guarantees.

Azure Stream Analytics has built-in recovery capabilities in case the delivery of an event fails. Stream Analytics
also provides built-in checkpoints to maintain the state of your job and provides repeatable results.

As a managed service, Stream Analytics guarantees event processing with a 99.9% availability at a minute level
of granularity. For more information, see the Stream Analytics SLA page.

https://docs.microsoft.com/stream-analytics-query/event-delivery-guarantees-azure-stream-analytics
https://azure.microsoft.com/support/legal/sla/stream-analytics/v1_0/

ComplianceCompliance

Performance

Next steps

In terms of security, Azure Stream Analytics encrypts all incoming and outgoing communications and supports
TLS 1.2. Built-in checkpoints are also encrypted. Stream Analytics doesn't store the incoming data since all
processing is done in-memory.

Azure Stream Analytics follows multiple compliance certifications as described in the overview of Azure
compliance.

Stream Analytics can process millions of events every second and it can deliver results with ultra low latencies.
It allows you to scale-up and scale-out to handle large real-time and complex event processing applications.
Stream Analytics supports higher performance by partitioning, allowing complex queries to be parallelized and
executed on multiple streaming nodes. Azure Stream Analytics is built on Trill, a high-performance in-memory
streaming analytics engine developed in collaboration with Microsoft Research.

You now have an overview of Azure Stream Analytics. Next, you can dive deep and create your first Stream
Analytics job:

Create a Stream Analytics job by using the Azure portal.
Create a Stream Analytics job by using Azure PowerShell.
Create a Stream Analytics job by using Visual Studio.
Create a Stream Analytics job by using Visual Studio Code.

https://gallery.technet.microsoft.com/overview-of-azure-c1be3942
https://github.com/microsoft/trill

Azure Stream Analytics solution patterns
13 minutes to read • Edit Online

Create a Stream Analytics job to power real-time dashboarding
experience

Use SQL for dashboard

Like many other services in Azure, Stream Analytics is best used with other services to create a larger end-to-end
solution. This article discusses simple Azure Stream Analytics solutions and various architectural patterns. You can
build on these patterns to develop more complex solutions. The patterns described in this article can be used in a
wide variety of scenarios. Examples of scenario-specific patterns are available on Azure solution architectures.

With Azure Stream Analytics, you can quickly stand up real-time dashboards and alerts. A simple solution ingests
events from Event Hubs or IoT Hub, and feeds the Power BI dashboard with a streaming data set. For more
information, see the detailed tutorial Analyze phone call data with Stream Analytics and visualize results in Power
BI dashboard.

This solution can be built in just a few minutes from Azure portal. There is no extensive coding involved, and SQL
language is used to express the business logic.

This solution pattern offers the lowest latency from the event source to the Power BI dashboard in a browser. Azure
Stream Analytics is the only Azure service with this built-in capability.

The Power BI dashboard offers low latency, but it cannot be used to produce full fledged Power BI reports. A
common reporting pattern is to output your data to a SQL database first. Then use Power BI's SQL connector to
query SQL for the latest data.

Using SQL database gives you more flexibility but at the expense of a slightly higher latency. This solution is
optimal for jobs with latency requirements greater than one second. With this method, you can maximize Power BI
capabilities to further slice and dice the data for reports, and much more visualization options. You also gain the
flexibility of using other dashboard solutions, such as Tableau.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-solution-patterns.md
https://azure.microsoft.com/solutions/architecture/?product=stream-analytics
https://docs.microsoft.com/power-bi/service-real-time-streaming

Incorporate real-time insights into your application with event
messaging

Dynamic applications and websites

SQL is not a high throughput data store. The maximum throughput to a SQL database from Azure Stream
Analytics is currently around 24 MB/s. If the event sources in your solution produce data at a higher rate, you need
to use processing logic in Stream Analytics to reduce the output rate to SQL. Techniques such as filtering,
windowed aggregates, pattern matching with temporal joins, and analytic functions can be used. The output rate to
SQL can be further optimized using techniques described in Azure Stream Analytics output to Azure SQL
Database.

The second most popular use of Stream Analytics is to generate real-time alerts. In this solution pattern, business
logic in Stream Analytics can be used to detect temporal and spatial patterns or anomalies, then produce alerting
signals. However, unlike the dashboard solution where Stream Analytics uses Power BI as a preferred endpoint, a
number of intermediate data sinks can be used. These sinks include Event Hubs, Service Bus, and Azure Functions.
You, as the application builder, need to decide which data sink works best for your scenario.

Downstream event consumer logic must be implemented to generate alerts in your existing business workflow.
Because you can implement custom logic in Azure Functions, Azure Functions is the fastest way you can perform
this integration. A tutorial for using Azure Function as the output for a Stream Analytics job can be found in Run
Azure Functions from Azure Stream Analytics jobs. Azure Functions also supports various types of notifications
including text and email. Logic App may also be used for such integration, with Event Hubs between Stream
Analytics and Logic App.

Event Hubs, on the other hand, offers the most flexible integration point. Many other services, like Azure Data
Explorer and Time Series Insights can consume events from Event Hubs. Services can be connected directly to the
Event Hubs sink from Azure Stream Analytics to complete the solution. Event Hubs is also the highest throughput
messaging broker available on Azure for such integration scenarios.

You can create custom real-time visualizations, such as dashboard or map visualization, using Azure Stream
Analytics and Azure SignalR Service. Using SignalR, web clients can be updated and show dynamic content in real-
time.

Incorporate real-time insights into your application through data stores

Use reference data for application customization

Most web services and web applications today use a request/response pattern to serve the presentation layer. The
request/response pattern is simple to build and can be easily scaled with low response time using a stateless
frontend and scalable stores, like Cosmos DB.

High data volume often creates performance bottlenecks in a CRUD-based system. The event sourcing solution
pattern is used to address the performance bottlenecks. Temporal patterns and insights are also difficult and
inefficient to extract from a traditional data store. Modern high-volume data driven applications often adopt a
dataflow-based architecture. Azure Stream Analytics as the compute engine for data in motion is a linchpin in that
architecture.

In this solution pattern, events are processed and aggregated into data stores by Azure Stream Analytics. The
application layer interacts with data stores using the traditional request/response pattern. Because of Stream
Analytics' ability to process a large number of events in real-time, the application is highly scalable without the
need to bulk up the data store layer. The data store layer is essentially a materialized view in the system. Azure
Stream Analytics output to Azure Cosmos DB describes how Cosmos DB is used as a Stream Analytics output.

In real applications where processing logic is complex and there is the need to upgrade certain parts of the logic
independently, multiple Stream Analytics jobs can be composed together with Event Hubs as the intermediary
event broker.

This pattern improves the resiliency and manageability of the system. However, even though Stream Analytics
guarantees exactly once processing, there is a small chance that duplicate events may land in the intermediary
Event Hubs. It's important for the downstream Stream Analytics job to dedupe events using logic keys in a
lookback window. For more information on event delivery, see Event Delivery Guarantees reference.

The Azure Stream Analytics reference data feature is designed specifically for end-user customization like alerting
threshold, processing rules, and geofences. The application layer can accept parameter changes and store them in a
SQL database. The Stream Analytics job periodically queries for changes from the database and makes the
customization parameters accessible through a reference data join. For more information on how to use reference

https://docs.microsoft.com/azure/architecture/patterns/event-sourcing
https://docs.microsoft.com/stream-analytics-query/event-delivery-guarantees-azure-stream-analytics

Add Machine Learning to your real-time insights

Near real-time data warehousing

data for application customization, see SQL reference data and reference data join.

This pattern can also be used to implement a rules engine where the thresholds of the rules are defined from
reference data. For more information on rules, see Process configurable threshold-based rules in Azure Stream
Analytics.

Azure Stream Analytics' built-in Anomaly Detection model is a convenient way to introduce Machine Learning to
your real-time application. For a wider range of Machine Learning needs, see Azure Stream Analytics integrates
with Azure Machine Learning's scoring service.

For advanced users who want to incorporate online training and scoring into the same Stream Analytics pipeline,
see this example of how do that with linear regression.

Another common pattern is real-time data warehousing, also called streaming data warehouse. In addition to
events arriving at Event Hubs and IoT Hub from your application, Azure Stream Analytics running on IoT Edge can
be used to fulfill data cleansing, data reduction, and data store and forward needs. Stream Analytics running on IoT
Edge can gracefully handle bandwidth limitation and connectivity issues in the system. The SQL output adapter can
be used to output to SQL Data Warehouse; however, the maximum throughput is limited to 10 MB/s.

https://docs.microsoft.com/stream-analytics-query/reference-data-join-azure-stream-analytics

Archiving real-time data for analytics

Use reference data for enrichment

One way to improve the throughput with some latency tradeoff is to archive the events into Azure Blob storage,
and then import them into SQL Data Warehouse with Polybase. You must manually stitch together output from
Stream Analytics to blob storage and input from blob storage to SQL Data Warehouse by archiving the data by
timestamp and importing periodically.

In this usage pattern, Azure Stream Analytics is used as a near real-time ETL engine. Newly arriving events are
continuously transformed and stored for downstream analytics service consumption.

Most data science and analytics activities still happen offline. Data can be archived by Azure Stream Analytics
through Azure Data Lake Store Gen2 output and Parquet output formats. This capability removes the friction to
feed data directly into Azure Data Lake Analytics, Azure Databricks, and Azure HDInsight. Azure Stream Analytics
is used as a near real-time ETL engine in this solution. You can explore archived data in Data Lake using various
compute engines.

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/load-data-from-azure-blob-storage-using-polybase

Operationalize insights from archived data

Data enrichment is often a requirement for ETL engines. Azure Stream Analytics supports data enrichment with
reference data from both SQL database and Azure Blob storage. Data enrichment can be done for data landing in
both Azure Data Lake and SQL Data Warehouse.

If you combine the offline analytics pattern with the near real-time application pattern, you can create a feedback
loop. The feedback loop lets the application automatically adjust for changing patterns in the data. This feedback
loop can be as simple as changing the threshold value for alerting, or as complex as retraining Machine Learning
models. The same solution architecture can be applied to both ASA jobs running in the cloud and on IoT Edge.

How to monitor ASA jobs

Build resilient and mission critical applications

An Azure Stream Analytics job can be run 24/7 to process incoming events continuously in real time. Its uptime
guarantee is crucial to the health of the overall application. While Stream Analytics is the only streaming analytics
service in the industry that offers a 99.9% availability guarantee, you may still incur some level of down time. Over
the years, Stream Analytics has introduced metrics, logs, and job states to reflect the health of the jobs. All of them
are surfaced through Azure Monitor service and can be further exported to OMS. For more information, see
Understand Stream Analytics job monitoring and how to monitor queries.

There are two key things to monitor:

Job failed state

First and foremost, you need to make sure the job is running. Without the job in the running state, no new
metrics or logs are generated. Jobs can change to a failed state for various reasons, including having a high
SU utilization level (i.e., running out of resources).

Watermark delay metrics

This metric reflects how far behind your processing pipeline is in wall clock time (seconds). Some of the
delay is attributed to the inherent processing logic. As a result, monitoring the increasing trend is much
more important than monitoring the absolute value. The steady state delay should be addressed by your
application design, not by monitoring or alerts.

Upon failure, activity logs and diagnostics logs are the best places to begin looking for errors.

Regardless of Azure Stream Analytics' SLA guarantee and how careful you run your end-to-end application,
outages happen. If your application is mission critical, you need to be prepared for outages in order to recover
gracefully.

For alerting applications, the most important thing is to detect the next alert. You may choose to restart the job
from the current time when recovering, ignoring past alerts. The job start time semantics are by the first output
time, not the first input time. The input is rewound backwards an appropriate amount of time to guarantee the first
output at the specified time is complete and correct. You won't get partial aggregates and trigger alerts

https://azure.microsoft.com/support/legal/sla/stream-analytics/v1_0/
https://azure.microsoft.com/blog/new-metric-in-azure-stream-analytics-tracks-latency-of-your-streaming-pipeline/

Lambda Architectures or Backfill processLambda Architectures or Backfill process

unexpectedly as a result.

You may also choose to start output from some amount of time in the past. Both Event Hubs and IoT Hub's
retention policies hold a reasonable amount of data to allow processing from the past. The tradeoff is how fast you
can catch up to the current time and start to generate timely new alerts. Data loses its value rapidly over time, so
it's important to catch up to the current time quickly. There are two ways to catch up quickly:

Provision more resources (SU) when catching up.
Restart from current time.

Restarting from current the time is simple to do, with the tradeoff of leaving a gap during processing. Restarting
this way might be OK for alerting scenarios, but can be problematic for dashboard scenarios and is a non-starter
for archiving and data warehousing scenarios.

Provisioning more resources can speed up the process, but the effect of having a processing rate surge is complex.

Test that your job is scalable to a larger number of SUs. Not all queries are scalable. You need to make sure
your query is parallelized.

Make sure there are enough partitions in the upstream Event Hubs or IoT Hub that you can add more
Throughput Units (TUs) to scale the input throughput. Remember, each Event Hubs TU maxes out at an
output rate of 2 MB/s.

Make sure you have provisioned enough resources in the output sinks (i.e., SQL Database, Cosmos DB), so
they don't throttle the surge in output, which can sometimes cause the system to lock up.

The most important thing is to anticipate the processing rate change, test these scenarios before going into
production, and be ready to scale the processing correctly during failure recovery time.

In the extreme scenario that incoming events are all delayed, it's possible all the delayed events are dropped if you
have applied a late arriving window to your job. The dropping of the events may appear to be a mysterious
behavior at the beginning; however, considering Stream Analytics is a real-time processing engine, it expects
incoming events to be close to the wall clock time. It has to drop events that violate these constraints.

Fortunately, the previous data archiving pattern can be used to process these late events gracefully. The idea is that
the archiving job processes incoming events in arrival time and archives events into the right time bucket in Azure
Blob or Azure Data Lake Store with their event time. It doesn't matter how late an event arrives, it will never be
dropped. It will always land in the right time bucket. During recovery, it's possible to reprocess the archived events
and backfill the results to the store of choice. This is similar to how lambda patterns are implemented.

SCENARIOS RESTART FROM NOW ONLY
RESTART FROM LAST STOPPED
TIME

RESTART FROM NOW +
BACKFILL WITH ARCHIVED
EVENTS

Dashboarding Creates gap OK for short outage Use for long outage

Alerting Acceptable OK for short outage Not necessary

Event sourcing app Acceptable OK for short outage Use for long outage

Data warehousing Data loss Acceptable Not necessary

Offline analytics Data loss Acceptable Not necessary

Putting it all together

Next steps

The backfill process has to be done with an offline batch processing system, which most likely has a different
programming model than Azure Stream Analytics. This means you have to re-implement the entire processing
logic.

For backfilling, it's still important to at least temporarily provision more resource to the output sinks to handle
higher throughput than the steady state processing needs.

It's not hard to imagine that all the solution patterns mentioned above can be combined together in a complex end-
to-end system. The combined system can include dashboards, alerting, event sourcing application, data
warehousing, and offline analytics capabilities.

The key is to design your system in composable patterns, so each subsystem can be built, tested, upgraded, and
recover independently.

You now have seen a variety of solution patterns using Azure Stream Analytics. Next, you can dive deep and create

your first Stream Analytics job:

Create a Stream Analytics job by using the Azure portal.
Create a Stream Analytics job by using Azure PowerShell.
Create a Stream Analytics job by using Visual Studio.

Quickstart: Create a Stream Analytics job by using
the Azure portal
6 minutes to read • Edit Online

Before you begin

Prepare the input data

This quickstart shows you how to get started with creating a Stream Analytics job. In this quickstart, you define a
Stream Analytics job that reads real-time streaming data and filters messages with a temperature greater than
27. Your Stream Analytics job will read data from IoT Hub, transform the data, and write the data back to a
container in blob storage. The input data used in this quickstart is generated by a Raspberry Pi online simulator.

If you don't have an Azure subscription, create a free account.

Sign in to the Azure portal.

Before defining the Stream Analytics job, you should prepare the input data. The real-time sensor data is
ingested to IoT Hub, which later configured as the job input. To prepare the input data required by the job,
complete the following steps:

SETTING SUGGESTED VALUE DESCRIPTION

Subscription <Your subscription> Select the Azure subscription that
you want to use.

Resource group asaquickstart-resourcegroup Select Create New and enter a new
resource-group name for your
account.

Region <Select the region that is closest to
your users>

Select a geographic location where
you can host your IoT Hub. Use the
location that's closest to your users.

IoT Hub Name MyASAIoTHub Select a name for your IoT Hub.

1. Sign in to the Azure portal.

2. Select Create a resource > Internet of Things > IoT Hub.

3. In the IoT Hub pane, enter the following information:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-quick-create-portal.md
https://azure.microsoft.com/free/
https://portal.azure.com/
https://portal.azure.com/

4. Select Next: Set size and scale.

5. Choose your Pricing and scale tier. For this quickstart, select the F1 - Free tier if it's still available on
your subscription. For more information, see IoT Hub pricing.

6. Select Review + create. Review your IoT Hub information and click Create. Your IoT Hub might take a
few minutes to create. You can monitor the progress in the Notifications pane.

https://azure.microsoft.com/pricing/details/iot-hub/

Create blob storage

7. In your IoT Hub navigation menu, click Add under IoT devices. Add a Device ID and click Save.

8. Once the device is created, open the device from the IoT devices list. Copy the Connection string --
primary key and save it to a notepad to use later.

1. From the upper left-hand corner of the Azure portal, select Create a resource > Storage > Storage
account.

2. In the Create storage account pane, enter a storage account name, location, and resource group. Choose
the same location and resource group as the IoT Hub you created. Then click Review + create to create
the account.

Create a Stream Analytics job

3. Once your storage account is created, select the Blobs tile on the Overview pane.

4. From the Blob Service page, select Container and provide a name for your container, such as
container1. Leave the Public access level as Private (no anonymous access) and select OK.

1. Sign in to the Azure portal.

2. Select Create a resource in the upper left-hand corner of the Azure portal.

SETTING SUGGESTED VALUE DESCRIPTION

Job name MyASAJob Enter a name to identify your Stream
Analytics job. Stream Analytics job
name can contain alphanumeric
characters, hyphens, and
underscores only and it must be
between 3 and 63 characters long.

Subscription <Your subscription> Select the Azure subscription that
you want to use for this job.

Resource group asaquickstart-resourcegroup Select the same resource group as
your IoT Hub.

Location <Select the region that is closest to
your users>

Select geographic location where
you can host your Stream Analytics
job. Use the location that's closest to
your users for better performance
and to reduce the data transfer cost.

Streaming units 1 Streaming units represent the
computing resources that are
required to execute a job. By default,
this value is set to 1. To learn about
scaling streaming units, refer to
understanding and adjusting
streaming units article.

Hosting environment Cloud Stream Analytics jobs can be
deployed to cloud or edge. Cloud
allows you to deploy to Azure Cloud,
and Edge allows you to deploy to an
IoT Edge device.

3. Select Analytics > Stream Analytics job from the results list.

4. Fill out the Stream Analytics job page with the following information:

 Configure job input

5. Check the Pin to dashboard box to place your job on your dashboard and then select Create.

6. You should see a Deployment in progress... notification displayed in the top right of your browser window.

In this section, you will configure an IoT Hub device input to the Stream Analytics job. Use the IoT Hub you
created in the previous section of the quickstart.

SETTING SUGGESTED VALUE DESCRIPTION

Input alias IoTHubInput Enter a name to identify the job’s
input.

Subscription <Your subscription> Select the Azure subscription that
has the storage account you created.
The storage account can be in the
same or in a different subscription.
This example assumes that you have
created storage account in the same
subscription.

1. Navigate to your Stream Analytics job.

2. Select Inputs > Add Stream input > IoT Hub.

3. Fill out the IoT Hub page with the following values:

 Configure job output

IoT Hub MyASAIoTHub Enter the name of the IoT Hub you
created in the previous section.

SETTING SUGGESTED VALUE DESCRIPTION

4. Leave other options to default values and select Save to save the settings.

SETTING SUGGESTED VALUE DESCRIPTION

Output alias BlobOutput Enter a name to identify the job’s
output.

Subscription <Your subscription> Select the Azure subscription that
has the storage account you created.
The storage account can be in the
same or in a different subscription.
This example assumes that you have
created storage account in the same
subscription.

Storage account asaquickstartstorage Choose or enter the name of the
storage account. Storage account
names are automatically detected if
they are created in the same
subscription.

Container container1 Select the existing container that you
created in your storage account.

1. Navigate to the Stream Analytics job that you created earlier.

2. Select Outputs > Add > Blob storage.

3. Fill out the Blob storage page with the following values:

Define the transformation query

4. Leave other options to default values and select Save to save the settings.

SELECT *
INTO BlobOutput
FROM IoTHubInput
HAVING Temperature > 27

1. Navigate to the Stream Analytics job that you created earlier.

2. Select Query and update the query as follows:

3. In this example, the query reads the data from IoT Hub and copies it to a new file in the blob. Select Save.

Run the IoT simulator

Start the Stream Analytics job and check the output

1. Open the Raspberry Pi Azure IoT Online Simulator.

2. Replace the placeholder in Line 15 with the Azure IoT Hub device connection string you saved in a
previous section.

3. Click Run. The output should show the sensor data and messages that are being sent to your IoT Hub.

1. Return to the job overview page and select Start.

2. Under Start job, select Now, for the Job output start time field. Then, select Start to start your job.

3. After few minutes, in the portal, find the storage account & the container that you have configured as
output for the job. You can now see the output file in the container. The job takes a few minutes to start for
the first time, after it is started, it will continue to run as the data arrives.

https://azure-samples.github.io/raspberry-pi-web-simulator/

Clean up resources

Next steps

When no longer needed, delete the resource group, the Stream Analytics job, and all related resources. Deleting
the job avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can
stop it and restart it later when you need. If you are not going to continue to use this job, delete all resources
created by this quickstart by using the following steps:

1. From the left-hand menu in the Azure portal, select Resource groups and then select the name of the
resource you created.

2. On your resource group page, select Delete, type the name of the resource to delete in the text box, and
then select Delete.

In this quickstart, you deployed a simple Stream Analytics job using Azure portal. You can also deploy Stream
Analytics jobs using PowerShell, Visual Studio, and Visual Studio Code.

To learn about configuring other input sources and performing real-time detection, continue to the following
article:

Real-time fraud detection using Azure Stream Analytics

Quickstart: Create a Stream Analytics job using
Azure PowerShell
9 minutes to read • Edit Online

Before you begin

NOTENOTE

Sign in to Azure

Connect to your Azure account
Connect-AzAccount

List all available subscriptions.
Get-AzSubscription

Select the Azure subscription you want to use to create the resource group and resources.
Get-AzSubscription -SubscriptionName "<your subscription name>" | Select-AzSubscription

The Azure PowerShell module is used to create and manage Azure resources using PowerShell cmdlets or scripts.
This quickstart details using the Azure PowerShell module to deploy and run an Azure Stream Analytics job.

The example job reads streaming data from an IoT Hub device. The input data is generated by a Raspberry Pi
online simulator. Next, the Stream Analytics job transforms the data using the Stream Analytics query language to
filter messages with a temperature greater than 27°. Finally, it writes the resulting output events into a file in blob
storage.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

If you don't have an Azure subscription, create a free account.

This quickstart requires the Azure PowerShell module. Run Get-Module -ListAvailable Az to find the
version that is installed on your local machine. If you need to install or upgrade, see Install Azure
PowerShell module.

Some IoT Hub actions are not supported by Azure PowerShell and must be completed using Azure CLI
version 2.0.70 or later and the IoT extension for Azure CLI. Install the Azure CLI and use
az extension add --name azure-iot to install the IoT extension.

Sign in to your Azure subscription with the Connect-AzAccount command, and enter your Azure credentials in the
pop-up browser:

If you have more than one subscription, select the subscription you would like to use for this quickstart by
running the following cmdlets. Make sure to replace <your subscription name> with the name of your
subscription:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-quick-create-powershell.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az?view=azps-3.3.0
https://docs.microsoft.com/powershell/azure/install-az-ps?view=azps-3.3.0
https://azure.microsoft.com/free/
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

Create a resource group

$resourceGroup = "StreamAnalyticsRG"
$location = "WestUS2"
New-AzResourceGroup `
 -Name $resourceGroup `
 -Location $location

Prepare the input data

Create an Azure resource group with New-AzResourceGroup. A resource group is a logical container into which
Azure resources are deployed and managed.

Before defining the Stream Analytics job, prepare the data that is configured as input to the job.

The following Azure CLI code block does many commands to prepare the input data required by the job. Review
the sections to understand the code.

az login

az account set --subscription "<your subscription>"

az iot hub create --name "<your IoT Hub name>" --resource-group $resourceGroup --sku S1

az iot hub show-connection-string --hub-name "MyASAIoTHub"

az iot hub device-identity create --hub-name "MyASAIoTHub" --device-id "MyASAIoTDevice"

az iot hub device-identity show-connection-string --hub-name "MyASAIoTHub" --device-id "MyASAIoTDevice"
--output table

1. In your PowerShell window, run the az login command to sign in to your Azure account.

When you successfully sign in, Azure CLI returns a list of your subscriptions. Copy the subscription you're
using for this quickstart and run the az account set command to select that subscription. Choose the same
subscription you selected in the previous section with PowerShell. Make sure to replace
<your subscription name> with the name of your subscription.

2. Create an IoT Hub using the az iot hub create command. This example creates an IoT Hub called
MyASAIoTHub. Because IoT Hub names are unique, you need to come up with your own IoT Hub name.
Set the SKU to F1 to use the free tier if it is available with your subscription. If not, choose the next lowest
tier.

Once the IoT hub has been created, get the IoT Hub connection string using the az iot hub show-
connection-string command. Copy the entire connection string and save it for when you add the IoT Hub
as input to your Stream Analytics job.

3. Add a device to IoT Hub using the az iothub device-identity create command. This example creates a device
called MyASAIoTDevice.

4. Get the device connection string using the az iot hub device-identity show-connection-string command.
Copy the entire connection string and save it for when you create the Raspberry Pi simulator.

https://docs.microsoft.com/powershell/module/az.resources/new-azresourcegroup
https://docs.microsoft.com/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest#change-the-active-subscription
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-using-cli
https://docs.microsoft.com/cli/azure/iot/hub?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/iot-hub/quickstart-send-telemetry-c
https://docs.microsoft.com/cli/azure/ext/azure-cli-iot-ext/iot/hub/device-identity#ext-azure-cli-iot-ext-az-iot-hub-device-identity-show-connection-string

Create blob storage

Create a Stream Analytics job

HostName=MyASAIoTHub.azure-
devices.net;DeviceId=MyASAIoTDevice;SharedAccessKey=a2mnUsg52+NIgYudxYYUNXI67r0JmNubmfVafojG8=

Output example:

The following Azure PowerShell code block uses commands to create blob storage that is used for job output.
Review the sections to understand the code.

$storageAccountName = "myasaquickstartstorage"
$storageAccount = New-AzStorageAccount `
 -ResourceGroupName $resourceGroup `
 -Name $storageAccountName `
 -Location $location `
 -SkuName Standard_LRS `
 -Kind Storage

$ctx = $storageAccount.Context
$containerName = "container1"

New-AzStorageContainer `
 -Name $containerName `
 -Context $ctx

$storageAccountKey = (Get-AzStorageAccountKey `
 -ResourceGroupName $resourceGroup `
 -Name $storageAccountName).Value[0]

Write-Host "The <storage account key> placeholder needs to be replaced in your output json files with
this key value:"
Write-Host $storageAccountKey -ForegroundColor Cyan

1. Create a standard general-purpose storage account using New-AzStorageAccount cmdlet. This example
creates a storage account called myasaquickstartstorage with locally redundant storage(LRS) and blob
encryption (enabled by default).

2. Retrieve the storage account context $storageAccount.Context that defines the storage account to be used.
When working with storage accounts, you reference the context instead of repeatedly providing the
credentials.

3. Create a storage container using New-AzStorageContainer.

4. Copy the storage key that is outputted by the code, and save that key to create the streaming job's output
later on.

Create a Stream Analytics job with New-AzStreamAnalyticsJob cmdlet. This cmdlet takes the job name, resource
group name, and job definition as parameters. The job name can be any friendly name that identifies your job. It
can have alphanumeric characters, hyphens, and underscores only and it must be between 3 and 63 characters
long. The job definition is a JSON file that contains the properties required to create a job. On your local machine,
create a file named JobDefinition.json and add the following JSON data to it:

https://docs.microsoft.com/powershell/module/az.storage/new-azstorageaccount
https://docs.microsoft.com/powershell/module/az.storage/new-azstoragecontainer
https://docs.microsoft.com/powershell/module/az.streamanalytics/new-azstreamanalyticsjob

{
 "location":"WestUS2",
 "properties":{
 "sku":{
 "name":"standard"
 },
 "eventsOutOfOrderPolicy":"adjust",
 "eventsOutOfOrderMaxDelayInSeconds":10,
 "compatibilityLevel": 1.1
 }
}

$jobName = "MyStreamingJob"
$jobDefinitionFile = "C:\JobDefinition.json"
New-AzStreamAnalyticsJob `
 -ResourceGroupName $resourceGroup `
 -File $jobDefinitionFile `
 -Name $jobName `
 -Force

Configure input to the job

{
 "properties": {
 "type": "Stream",
 "datasource": {
 "type": "Microsoft.Devices/IotHubs",
 "properties": {
 "iotHubNamespace": "MyASAIoTHub",
 "sharedAccessPolicyName": "iothubowner",
 "sharedAccessPolicyKey": "accesspolicykey",
 "endpoint": "messages/events",
 "consumerGroupName": "$Default"
 }
 },
 "compression": {
 "type": "None"
 },
 "serialization": {
 "type": "Json",
 "properties": {
 "encoding": "UTF8"
 }
 }
 },
 "name": "IoTHubInput",
 "type": "Microsoft.StreamAnalytics/streamingjobs/inputs"
}

Next, run the New-AzStreamAnalyticsJob cmdlet. Replace the value of jobDefinitionFile variable with the path
where you've stored the job definition JSON file.

Add an input to your job by using the New-AzStreamAnalyticsInput cmdlet. This cmdlet takes the job name, job
input name, resource group name, and the job input definition as parameters. The job input definition is a JSON
file that contains the properties required to configure the job’s input. In this example, you'll create a blob storage
as an input.

On your local machine, create a file named JobInputDefinition.json and add the following JSON data to it. Make
sure to replace the value for accesspolicykey with the SharedAccessKey portion of the IoT Hub connection string
you saved in a previous section.

https://docs.microsoft.com/powershell/module/az.streamanalytics/new-azstreamanalyticsinput

$jobInputName = "IoTHubInput"
$jobInputDefinitionFile = "C:\JobInputDefinition.json"
New-AzStreamAnalyticsInput `
 -ResourceGroupName $resourceGroup `
 -JobName $jobName `
 -File $jobInputDefinitionFile `
 -Name $jobInputName

Configure output to the job

{
 "properties": {
 "datasource": {
 "type": "Microsoft.Storage/Blob",
 "properties": {
 "storageAccounts": [
 {
 "accountName": "asaquickstartstorage",
 "accountKey": "<storage account key>"
 }
],
 "container": "container1",
 "pathPattern": "output/",
 "dateFormat": "yyyy/MM/dd",
 "timeFormat": "HH"
 }
 },
 "serialization": {
 "type": "Json",
 "properties": {
 "encoding": "UTF8",
 "format": "LineSeparated"
 }
 }
 },
 "name": "BlobOutput",
 "type": "Microsoft.StreamAnalytics/streamingjobs/outputs"
}

Next, run the New-AzStreamAnalyticsInput cmdlet, make sure to replace the value of jobDefinitionFile variable
with the path where you've stored the job input definition JSON file.

Add an output to your job by using the New-AzStreamAnalyticsOutput cmdlet. This cmdlet takes the job name,
job output name, resource group name, and the job output definition as parameters. The job output definition is a
JSON file that contains the properties required to configure job’s output. This example uses blob storage as
output.

On your local machine, create a file named JobOutputDefinition.json , and add the following JSON data to it.
Make sure to replace the value for accountKey with your storage account’s access key that is the value stored in
$storageAccountKey value.

Next, run the New-AzStreamAnalyticsOutput cmdlet. Make sure to replace the value of jobOutputDefinitionFile

variable with the path where you have stored the job output definition JSON file.

https://docs.microsoft.com/powershell/module/az.streamanalytics/new-azstreamanalyticsoutput

$jobOutputName = "BlobOutput"
$jobOutputDefinitionFile = "C:\JobOutputDefinition.json"
New-AzStreamAnalyticsOutput `
 -ResourceGroupName $resourceGroup `
 -JobName $jobName `
 -File $jobOutputDefinitionFile `
 -Name $jobOutputName -Force

Define the transformation query

{
 "name":"MyTransformation",
 "type":"Microsoft.StreamAnalytics/streamingjobs/transformations",
 "properties":{
 "streamingUnits":1,
 "script":null,
 "query":" SELECT * INTO BlobOutput FROM IoTHubInput HAVING Temperature > 27"
 }
}

$jobTransformationName = "MyJobTransformation"
$jobTransformationDefinitionFile = "C:\JobTransformationDefinition.json"
New-AzStreamAnalyticsTransformation `
 -ResourceGroupName $resourceGroup `
 -JobName $jobName `
 -File $jobTransformationDefinitionFile `
 -Name $jobTransformationName -Force

Run the IoT simulator

Add a transformation your job by using the New-AzStreamAnalyticsTransformation cmdlet. This cmdlet takes the
job name, job transformation name, resource group name, and the job transformation definition as parameters.
On your local machine, create a file named JobTransformationDefinition.json and add the following JSON data
to it. The JSON file contains a query parameter that defines the transformation query:

Next run the New-AzStreamAnalyticsTransformation cmdlet. Make sure to replace the value of
jobTransformationDefinitionFile variable with the path where you've stored the job transformation definition

JSON file.

1. Open the Raspberry Pi Azure IoT Online Simulator.

2. Replace the placeholder in Line 15 with the entire Azure IoT Hub Device connection string you saved in a
previous section.

3. Click Run. The output should show the sensor data and messages that are being sent to your IoT Hub.

https://docs.microsoft.com/powershell/module/az.streamanalytics/new-azstreamanalyticstransformation
https://azure-samples.github.io/raspberry-pi-web-simulator/

Start the Stream Analytics job and check the output

Start-AzStreamAnalyticsJob `
 -ResourceGroupName $resourceGroup `
 -Name $jobName `
 -OutputStartMode 'JobStartTime'

Clean up resources

Remove-AzResourceGroup `
 -Name $resourceGroup

Next steps

Start the job by using the Start-AzStreamAnalyticsJob cmdlet. This cmdlet takes the job name, resource group
name, output start mode, and start time as parameters. OutputStartMode accepts values of JobStartTime ,
CustomTime , or LastOutputEventTime . To learn more about what each of these values are referring to, see the

parameters section in PowerShell documentation.

After you run the following cmdlet, it returns True as output if the job starts. In the storage container, an output
folder is created with the transformed data.

When no longer needed, delete the resource group, the streaming job, and all related resources. Deleting the job
avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can skip
deleting it, and stop the job for now. If you aren't going to continue to use this job, delete all resources created by
this quickstart by running the following cmdlet:

In this quickstart, you deployed a simple Stream Analytics job using PowerShell. You can also deploy Stream
Analytics jobs using the Azure portal and Visual Studio.

To learn about configuring other input sources and performing real-time detection, continue to the following
article:

https://docs.microsoft.com/powershell/module/az.streamanalytics/start-azstreamanalyticsjob
https://docs.microsoft.com/powershell/module/az.streamanalytics/start-azstreamanalyticsjob

Real-time fraud detection using Azure Stream Analytics

Quickstart: Create an Azure Stream Analytics job by
using Visual Studio
6 minutes to read • Edit Online

Before you begin

Prepare the input data

This quickstart shows you how to create and run a Stream Analytics job using Azure Stream Analytics tools for
Visual Studio. The example job reads streaming data from an IoT Hub device. You define a job that calculates
the average temperature when over 27° and writes the resulting output events to a new file in blob storage.

If you don't have an Azure subscription, create a free account.

Sign in to the Azure portal.

Install Visual Studio 2019, Visual Studio 2015, or Visual Studio 2013 Update 4. Enterprise
(Ultimate/Premium), Professional, and Community editions are supported. Express edition is not
supported.

Follow the installation instructions to install Stream Analytics tools for Visual Studio.

Before defining the Stream Analytics job, you should prepare the data, which is later configured as the job
input. To prepare the input data required by the job, complete the following steps:

SETTING SUGGESTED VALUE DESCRIPTION

Subscription <Your subscription> Select the Azure subscription that
you want to use.

Resource group asaquickstart-resourcegroup Select Create New and enter a new
resource-group name for your
account.

Region <Select the region that is closest to
your users>

Select a geographic location where
you can host your IoT Hub. Use the
location that's closest to your users.

IoT Hub Name MyASAIoTHub Select a name for your IoT Hub.

1. Sign in to the Azure portal.

2. Select Create a resource > Internet of Things > IoT Hub.

3. In the IoT Hub pane, enter the following information:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-quick-create-vs.md
https://azure.microsoft.com/free/
https://portal.azure.com/
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio-install
https://portal.azure.com/

4. Select Next: Set size and scale.

5. Choose your Pricing and scale tier. For this quickstart, select the F1 - Free tier if it's still available on
your subscription. If the free tier is unavailable, choose the lowest tier available. For more information,
see IoT Hub pricing.

6. Select Review + create. Review your IoT Hub information and click Create. Your IoT Hub might take a
few minutes to create. You can monitor the progress in the Notifications pane.

https://azure.microsoft.com/pricing/details/iot-hub/

Create blob storage

7. In your IoT Hub navigation menu, click Add under IoT devices. Add a Device ID and click Save.

8. Once the device is created, open the device from the IoT devices list. Copy the Connection string --
primary key and save it to a notepad to use later.

1. From the upper left-hand corner of the Azure portal, select Create a resource > Storage > Storage
account.

2. In the Create storage account pane, enter a storage account name, location, and resource group.

Create a Stream Analytics project

Choose the same location and resource group as the IoT Hub you created. Then click Review + create
to create the account.

3. Once your storage account is created, select the Blobs tile on the Overview pane.

4. From the Blob Service page, select Container and provide a name for your container, such as
container1. Leave the Public access level as Private (no anonymous access) and select OK.

1. Start Visual Studio.

Choose the required subscription

Define input

2. Select File > New Project.

3. In the templates list on the left, select Stream Analytics, and then select Azure Stream Analytics
Application.

4. Input the project Name, Location, and Solution name, and select OK.

Notice the elements that are included in an Azure Stream Analytics project.

1. In Visual Studio, on the View menu, select Server Explorer.

2. Right click on Azure, select Connect to Microsoft Azure Subscription, and then sign in with your
Azure account.

1. In Solution Explorer, expand the Inputs node and double-click Input.json.

2. Fill out the Stream Analytics Input Configuration with the following values:

SETTING SUGGESTED VALUE DESCRIPTION

Input Alias Input Enter a name to identify the job’s
input.

Source Type Data Stream Choose the appropriate input
source: Data Stream or Reference
Data.

Source IoT Hub Choose the appropriate input
source.

Resource Choose data source from current
account

Choose to enter data manually or
select an existing account.

Subscription <Your subscription> Select the Azure subscription that
has the IoT Hub you created.

IoT Hub MyASAIoTHub Choose or enter the name of your
IoT Hub. IoT Hub names are
automatically detected if they are
created in the same subscription.

3. Leave other options to default values and select Save to save the settings.

Define output

SETTING SUGGESTED VALUE DESCRIPTION

Output Alias Output Enter a name to identify the job’s
output.

Sink Blob Storage Choose the appropriate sink.

Resource Provide data source settings
manually

Choose to enter data manually or
select an existing account.

Subscription <Your subscription> Select the Azure subscription that
has the storage account you
created. The storage account can be
in the same or in a different
subscription. This example assumes
that you have created storage
account in the same subscription.

Storage Account asaquickstartstorage Choose or enter the name of the
storage account. Storage account
names are automatically detected if
they are created in the same
subscription.

Container container1 Select the existing container that
you created in your storage
account.

Path Pattern output Enter the name of a file path to be
created within the container.

1. In Solution Explorer, expand the Outputs node and double-click Output.json.

2. Fill out the Stream Analytics Output Configuration with the following values:

3. Leave other options to default values and select Save to save the settings.

Define the transformation query

Submit a Stream Analytics query to Azure

SELECT *
INTO BlobOutput
FROM IoTHubInput
HAVING Temperature > 27

1. Open Script.asaql from Solution Explorer in Visual Studio.

2. Add the following query:

1. In the Query Editor, select Submit To Azure in the script editor.

2. Select Create a New Azure Stream Analytics job and enter a Job Name. Choose the Subscription,
Resource Group, and Location you used at the beginning of the Quickstart.

Run the IoT simulator

Start the Stream Analytics job and check output

1. Open the Raspberry Pi Azure IoT Online Simulator in a new browser tab or window.

2. Replace the placeholder in Line 15 with the Azure IoT Hub device connection string you saved in a
previous section.

3. Click Run. The output should show the sensor data and messages that are being sent to your IoT Hub.

1. When your job is created, the job view opens automatically. Select the green arrow button to start the
job,

https://azure-samples.github.io/raspberry-pi-web-simulator/

2. Change the Job output start mode to JobStartTime and select Start.

3. Note the job status has changed to Running, and there are input/output events. This may take a few
minutes.

Clean up resources

Next steps

4. To view results, on the View menu, select Cloud Explorer, and navigate to the storage account in your
resource group. Under Blob Containers, double-click container1, and then the output file path.

When no longer needed, delete the resource group, the streaming job, and all related resources. Deleting the
job avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can
stop it and restart it later when you need. If you are not going to continue to use this job, delete all resources
created by this quickstart by using the following steps:

1. From the left-hand menu in the Azure portal, select Resource groups and then select the name of the
resource you created.

2. On your resource group page, select Delete, type the name of the resource to delete in the text box, and
then select Delete.

In this quickstart, you deployed a simple Stream Analytics job using Visual Studio. You can also deploy Stream
Analytics jobs using the Azure portal and PowerShell.

To learn about Azure Stream Analytics tools for Visual Studio, continue to the following article:

Use Visual Studio to view Azure Stream Analytics jobs

Quickstart: Create an Azure Stream Analytics job in
Visual Studio Code (preview)
8 minutes to read • Edit Online

Before you begin

Install the Azure Stream Analytics Tools extension

Activate the Azure Stream Analytics Tools extension

This quickstart shows you how to create and run an Azure Stream Analytics job by using the Azure Stream
Analytics Tools extension for Visual Studio Code. The example job reads streaming data from an Azure IoT Hub
device. You define a job that calculates the average temperature when over 27° and writes the resulting output
events to a new file in blob storage.

If you don't have an Azure subscription, create a free account.

Sign in to the Azure portal.

Install Visual Studio Code.

1. Open Visual Studio Code.

2. From Extensions on the left pane, search for Stream Analytics and select Install on the Azure Stream
Analytics Tools extension.

3. After the extension is installed, verify that Azure Stream Analytics Tools is visible in Enabled
Extensions.

1. Select the Azure icon on the Visual Studio Code activity bar. Under Stream Analytics on the side bar,
select Sign in to Azure.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/quick-create-vs-code.md
https://azure.microsoft.com/free/
https://portal.azure.com/
https://code.visualstudio.com/

NOTENOTE

Prepare the input data

2. When you're signed in, your Azure account name appears on the status bar in the lower-left corner of the
Visual Studio Code window.

The Azure Stream Analytics Tools extension will automatically sign you in the next time if you don't sign out. If your
account has two-factor authentication, we recommend that you use phone authentication rather than using a PIN. If you
have issues with listing resources, signing out and signing in again usually helps. To sign out, enter the command
Azure: Sign Out .

Before you define the Stream Analytics job, you should prepare the data that's later configured as the job input.
To prepare the input data that the job requires, complete the following steps:

SETTING SUGGESTED VALUE DESCRIPTION

Subscription <Your subscription> Select the Azure subscription that
you want to use.

1. Sign in to the Azure portal.

2. Select Create a resource > Internet of Things > IoT Hub.

3. In the IoT Hub pane, enter the following information:

https://portal.azure.com/

Resource Group asaquickstart-resourcegroup Select Create New and enter a new
resource-group name for your
account.

Region <Select the region that is closest to
your users>

Select a geographic location where
you can host your IoT hub. Use the
location that's closest to your users.

IoT Hub Name MyASAIoTHub Select a name for your IoT hub.

SETTING SUGGESTED VALUE DESCRIPTION

4. Select Next: Set size and scale.

5. Make a selection for Pricing and scale tier. For this quickstart, select the F1 - Free tier if it's still
available on your subscription. If the free tier is unavailable, choose the lowest tier available. For more
information, see Azure IoT Hub pricing.

https://azure.microsoft.com/pricing/details/iot-hub/

6. Select Review + create. Review your IoT hub information and select Create. Your IoT hub might take a
few minutes to create. You can monitor the progress on the Notifications pane.

7. On your IoT hub's navigation menu, select Add under IoT devices. Add an ID for Device ID , and select
Save.

Run the IoT simulator

8. After the device is created, open the device from the IoT devices list. Copy the string in Connection
string (primary key) and save it to a notepad to use later.

1. Open the Raspberry Pi Azure IoT Online Simulator in a new browser tab or window.

2. Replace the placeholder in line 15 with the IoT hub device connection string that you saved earlier.

3. Select Run. The output should show the sensor data and messages that are being sent to your IoT hub.

https://azure-samples.github.io/raspberry-pi-web-simulator/

Create blob storage
1. From the upper-left corner of the Azure portal, select Create a resource > Storage > Storage account.

2. In the Create storage account pane, enter a storage account name, location, and resource group.
Choose the same location and resource group as the IoT hub that you created. Then select Review +
create to create the account.

3. After your storage account is created, select the Blobs tile on the Overview pane.

Create a Stream Analytics project

4. From the Blob Service page, select Container and provide a name for your container, such as
container1. Leave Public access level as Private (no anonymous access) and select OK.

1. In Visual Studio Code, select Ctrl+Shift+P to open the command palette. Then enter ASA and select
ASA: Create New Project.

2. Enter your project name, like myASAproj, and select a folder for your project.

NOTENOTE

Define the transformation query

3. The new project is added to your workspace. A Stream Analytics project consists of three folders: Inputs,
Outputs, and Functions. It also has the query script (*.asaql), a JobConfig.json file, and an
asaproj.json configuration file.

The asaproj.json configuration file contains the inputs, outputs, and job configuration file information
needed for submitting the Stream Analytics job to Azure.

When you're adding inputs and outputs from the command palette, the corresponding paths are added to asaproj.json
automatically. If you add or remove inputs or outputs on disk directly, you need to manually add or remove them from
asaproj.json. You can choose to put the inputs and outputs in one place and then reference them in different jobs by
specifying the paths in each asaproj.json file.

SELECT *
INTO Output
FROM Input
HAVING Temperature > 27

1. Open myASAproj.asaql from your project folder.

2. Add the following query:

Test the query locally with sample data

Define a live input

Before you run the query in the cloud, you can test it locally with a local sample data file or with data captured
from live input to verify the query logic.

Follow the instructions in Test queries locally with sample data for more details.

1. Right-click the Inputs folder in your Stream Analytics project. Then select ASA: Add Input from the
context menu.

Or select Ctrl+Shift+P to open the command palette and enter ASA: Add Input.

2. Choose IoT Hub for the input type.

SETTING SUGGESTED VALUE DESCRIPTION

Name Input Enter a name to identify the job's
input.

IotHubNamespace MyASAIoTHub Choose or enter the name of your
IoT hub. IoT hub names are
automatically detected if they're
created in the same subscription.

SharedAccessPolicyName iothubowner

3. If you added the input from the command palette, choose the Stream Analytics query script that will use
the input. It should be automatically populated with the file path to myASAproj.asaql.

4. Choose Select from your Azure Subscriptions from the drop-down menu.

5. Edit the newly generated IoTHub1.json file with the following values. Keep default values for fields not
mentioned here.

You can use the CodeLens feature to help you enter a string, select from a drop-down list, or change the
text directly in the file. The following screenshot shows Select from your Subscriptions as an example.
The credentials are auto-listed and saved in local credential manager.

Preview input
Select Preview data in IoTHub1.json from the top line. Some input data will be fetched from the IoT hub and
shown in the preview window. This process might take a while.

Define an output

SETTING SUGGESTED VALUE DESCRIPTION

Name Output Enter a name to identify the job's
output.

Storage Account asaquickstartstorage Choose or enter the name of your
storage account. Storage account
names are automatically detected if
they're created in the same
subscription.

1. Select Ctrl+Shift+P to open the command palette. Then, enter ASA: Add Output.

2. Choose Blob Storage for the sink type.

3. Choose the Stream Analytics query script that will use this input.

4. Enter the output file name as BlobStorage.

5. Edit BlobStorage by using the following values. Keep default values for fields not mentioned here. Use
the CodeLens feature to help you select from a drop-down list or enter a string.

Compile the script

Container container1 Select the existing container that
you created in your storage account.

Path Pattern output Enter the name of a file path to be
created within the container.

SETTING SUGGESTED VALUE DESCRIPTION

Script compilation checks syntax and generates the Azure Resource Manager templates for automatic
deployment.

There are two ways to trigger script compilation:

Select the script from the workspace and then compile from the command palette.

Right-click the script and select ASA: Compile Script.

After compilation, you can find the two generated Azure Resource Manager templates in the Deploy folder of
your project. These two files are used for automatic deployment.

Submit a Stream Analytics job to Azure

Start the Stream Analytics job and check output

1. In the script editor window of your query script, select Submit to Azure.

2. Select your subscription from the pop-up list.

3. Choose Select a job. Then choose Create New Job.

4. Enter your job name, myASAjob. Then follow the instructions to choose the resource group and location.

5. Select Submit to Azure. You can find the logs in the output window.

6. When your job is created, you can see it in Stream Analytics Explorer.

1. Open Stream Analytics Explorer in Visual Studio Code and find your job, myASAJob.

2. Right-click the job name. Then, select Start from the context menu.

Clean up resources

Next steps

3. Choose Now in the pop-up window to start the job.

4. Note that the job status has changed to Running. Right-click the job name and select Open Job View in
Portal to see the input and output event metrics. This action might take a few minutes.

5. To view the results, open the blob storage in the Visual Studio Code extension or in the Azure portal.

When they're no longer needed, delete the resource group, the streaming job, and all related resources. Deleting
the job avoids billing the streaming units that the job consumes.

If you're planning to use the job in the future, you can stop it and restart it later. If you're not going to use this job
again, use the following steps to delete all resources that you created in this quickstart:

1. From the left menu in the Azure portal, select Resource groups and then select the name of the resource
that you created.

2. On your resource group page, select Delete. Enter the name of the resource to delete in the text box, and
then select Delete.

In this quickstart, you deployed a simple Stream Analytics job by using Visual Studio Code. You can also deploy
Stream Analytics jobs by using the Azure portal, PowerShell, and Visual Studio.

To learn about Azure Stream Analytics Tools for Visual Studio Code, continue to the following articles:

Test Azure Stream Analytics jobs locally against live input with Visual Studio Code

Use Visual Studio Code to view Azure Stream Analytics jobs

Set up CI/CD pipelines by using the npm package

Tutorial: Analyze phone call data with Stream
Analytics and visualize results in Power BI dashboard
11 minutes to read • Edit Online

Prerequisites

Create an Azure Event Hub

This tutorial teaches how to analyze phone call data using Azure Stream Analytics. The phone call data, generated
by a client application, contains some fraudulent calls, which will be filtered by the Stream Analytics job.

In this tutorial, you learn how to:

Generate sample phone call data and send it to Azure Event Hubs
Create a Stream Analytics job
Configure job input and output
Define a query to filter fraudulent calls
Test and start the job
Visualize results in Power BI

Before you start, do the following actions:

If you don't have an Azure subscription, create a free account.
Sign in to the Azure portal.
Download the phone call event generator app TelcoGenerator.zip from the Microsoft Download Center or get
the source code from GitHub.
You will need Power BI account.

Before Stream Analytics can analyze the fraudulent calls data stream, the data needs to be sent to Azure. In this
tutorial, you will send data to Azure by using Azure Event Hubs.

Use the following steps to create an Event Hub and send call data to that Event Hub:

1. Sign in to the Azure portal.

2. Select Create a resource > Internet of Things > Event Hubs.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-manage-job.md
https://azure.microsoft.com/free/
https://portal.azure.com/
https://download.microsoft.com/download/8/b/d/8bd50991-8d54-4f59-ab83-3354b69c8a7e/telcogenerator.zip
https://aka.ms/azure-stream-analytics-telcogenerator
https://docs.microsoft.com/azure/event-hubs/event-hubs-what-is-event-hubs
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

Name myEventHubsNS A unique name to identify the event
hub namespace.

Subscription <Your subscription> Select an Azure subscription where
you want to create the event hub.

Resource group MyASADemoRG Select Create New and enter a new
resource-group name for your
account.

Location West US2 Location where the event hub
namespace can be deployed.

3. Fill out the Create Namespace pane with the following values:

4. Use default options on the remaining settings and select Create.

5. When the namespace has finished deploying, go to All resources and find myEventHubsNS in the list of
Azure resources. Select myEventHubsNS to open it.

6. Next select +Event Hub and enter the Name as MyEventHub or a different name of your choice. Use the
default options on the remaining settings and select Create. Then wait for the deployment to succeed.

Grant access to the event hub and get a connection stringGrant access to the event hub and get a connection string
Before an application can send data to Azure Event Hubs, the event hub must have a policy that allows appropriate
access. The access policy produces a connection string that includes authorization information.

1. Navigate to the event hub you created in the previous step, MyEventHub*. Select Shared access policies
under Settings, and then select + Add.

2. Name the policy MyPolicy and ensure Manage is checked. Then select Create.

3. Once the policy is created, select to open the policy, and find the Connection string–primary key. Select
the blue copy button next to the connection string.

4. Paste the connection string into a text editor. You need this connection string in the next section.

The connection string looks as follows:

Endpoint=sb://<Your event hub namespace>.servicebus.windows.net/;SharedAccessKeyName=<Your shared access
policy name>;SharedAccessKey=<generated key>;EntityPath=<Your event hub name>

Notice that the connection string contains multiple key-value pairs separated with semicolons: Endpoint,
SharedAccessKeyName, SharedAccessKey, and EntityPath.

Start the event generator application

Create a Stream Analytics job

Before you start the TelcoGenerator app, you should configure it to send data to the Azure Event Hubs you created
earlier.

telcodatagen.exe 1000 0.2 2

RECORD DEFINITION

CallrecTime The timestamp for the call start time.

SwitchNum The telephone switch used to connect the call. For this
example, the switches are strings that represent the
country/region of origin (US, China, UK, Germany, or
Australia).

CallingNum The phone number of the caller.

CallingIMSI The International Mobile Subscriber Identity (IMSI). It's a
unique identifier of the caller.

CalledNum The phone number of the call recipient.

CalledIMSI International Mobile Subscriber Identity (IMSI). It's a
unique identifier of the call recipient.

1. Extract the contents of TelcoGenerator.zip file.

2. Open the TelcoGenerator\TelcoGenerator\telcodatagen.exe.config file in a text editor of your choice (There is
more than one .config file, so be sure that you open the right one.)

3. Update the <appSettings> element in the config file with the following details:

Set the value of the EventHubName key to the value of the EntityPath in the connection string.
Set the value of the Microsoft.ServiceBus.ConnectionString key to the connection string without the
EntityPath value (don't forget to remove the semicolon that precedes it).

4. Save the file.

5. Next open a command window and change to the folder where you unzipped the TelcoGenerator
application. Then enter the following command:

This command takes the following parameters:

Number of call data records per hour.
Percentage of fraud probability, which is how often the app should simulate a fraudulent call. The value
0.2 means that about 20% of the call records will look fraudulent.
Duration in hours, which is the number of hours that the app should run. You can also stop the app at
any time by ending the process (Ctrl+C) at the command line.

After a few seconds, the app starts displaying phone call records on the screen as it sends them to the event
hub. The phone call data contains the following fields:

Now that you have a stream of call events, you can create a Stream Analytics job that reads data from the event
hub.

https://download.microsoft.com/download/8/b/d/8bd50991-8d54-4f59-ab83-3354b69c8a7e/telcogenerator.zip

SETTING SUGGESTED VALUE DESCRIPTION

Job name ASATutorial A unique name to identify the event
hub namespace.

Subscription <Your subscription> Select an Azure subscription where
you want to create the job.

Resource group MyASADemoRG Select Use existing and enter a new
resource-group name for your
account.

Location West US2 Location where the job can be
deployed. It's recommended to place
the job and the event hub in the
same region for best performance
and so that you don't pay to transfer
data between regions.

Hosting environment Cloud Stream Analytics jobs can be
deployed to cloud or edge. Cloud
allows you to deploy to Azure Cloud,
and Edge allows you to deploy to an
IoT Edge device.

Streaming units 1 Streaming units represent the
computing resources that are
required to execute a job. By default,
this value is set to 1. To learn about
scaling streaming units, see
understanding and adjusting
streaming units article.

1. To create a Stream Analytics job, navigate to the Azure portal.

2. Select Create a resource > Internet of Things > Stream Analytics job.

3. Fill out the New Stream Analytics job pane with the following values:

4. Use default options on the remaining settings, select Create, and wait for the deployment to succeed.

https://portal.azure.com/

Configure job input
The next step is to define an input source for the job to read data using the event hub you created in the previous
section.

SETTING SUGGESTED VALUE DESCRIPTION

Input alias CallStream Provide a friendly name to identify
your input. Input alias can contain
alphanumeric characters, hyphens,
and underscores only and must be 3-
63 characters long.

Subscription <Your subscription> Select the Azure subscription where
you created the event hub. The event
hub can be in same or a different
subscription as the Stream Analytics
job.

1. From the Azure portal, open the All resources pane, and find the ASATutorial Stream Analytics job.

2. In the Job Topology section of the Stream Analytics job pane, select the Inputs option.

3. Select + Add stream input and Event hub. Fill out the pane with the following values:

Configure job output

Event hub namespace myEventHubsNS Select the event hub namespace you
created in the previous section. All
the event hub namespaces available
in your current subscription are listed
in the dropdown.

Event Hub name MyEventHub Select the event hub you created in
the previous section. All the event
hubs available in your current
subscription are listed in the
dropdown.

Event Hub policy name MyPolicy Select the event hub shared access
policy you created in the previous
section. All the event hubs policies
available in your current subscription
are listed in the dropdown.

SETTING SUGGESTED VALUE DESCRIPTION

4. Use default options on the remaining settings and select Save.

The last step is to define an output sink for the job where it can write the transformed data. In this tutorial, you
output and visualize data with Power BI.

SETTING SUGGESTED VALUE

Output alias MyPBIoutput

1. From the Azure portal open All resources pane, and the ASATutorial Stream Analytics job.

2. In the Job Topology section of the Stream Analytics job pane, select the Outputs option.

3. Select + Add > Power BI. Then fill the form with the following details and select Authorize:

Define a query to analyze input data

Dataset name ASAdataset

Table name ASATable

SETTING SUGGESTED VALUE

4. When you select Authorize, a pop-up window opens and you are asked to provide credentials to
authenticate to your Power BI account. Once the authorization is successful, Save the settings.

The next step is to create a transformation that analyzes data in real time. You define the transformation query by
using Stream Analytics Query Language. The query used in this tutorial detects fraudulent calls from the phone
data.

In this example, fraudulent calls are made from the same user within five seconds but in separate locations. For
example, the same user can't legitimately make a call from the US and Australia at the same time. To define the
transformation query for your Stream Analytics job:

1. From the Azure portal, open the All resources pane and navigate to the ASATutorial Stream Analytics job
you created earlier.

2. In the Job Topology section of the Stream Analytics job pane, select the Query option. The query window
lists the inputs and outputs that are configured for the job, and lets you create a query to transform the
input stream.

3. Replace the existing query in the editor with the following query, which performs a self-join on a 5-second
interval of call data:

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

 Test your query

SELECT System.Timestamp AS WindowEnd, COUNT(*) AS FraudulentCalls
INTO "MyPBIoutput"
FROM "CallStream" CS1 TIMESTAMP BY CallRecTime
JOIN "CallStream" CS2 TIMESTAMP BY CallRecTime
ON CS1.CallingIMSI = CS2.CallingIMSI
AND DATEDIFF(ss, CS1, CS2) BETWEEN 1 AND 5
WHERE CS1.SwitchNum != CS2.SwitchNum
GROUP BY TumblingWindow(Duration(second, 1))

To check for fraudulent calls, you can self-join the streaming data based on the CallRecTime value. You can
then look for call records where the CallingIMSI value (the originating number) is the same, but the
SwitchNum value (country/region of origin) is different. When you use a JOIN operation with streaming

data, the join must provide some limits on how far the matching rows can be separated in time. Because the
streaming data is endless, the time bounds for the relationship are specified within the ON clause of the join
using the DATEDIFF function.

This query is just like a normal SQL join except for the DATEDIFF function. The DATEDIFF function used
in this query is specific to Stream Analytics, and it must appear within the ON...BETWEEN clause.

4. Save the query.

You can test a query from the query editor using sample data. Run the following steps to test the query:

1. Make sure that the TelcoGenerator app is running and producing phone call records.

2. In the Query pane, select the dots next to the CallStream input and then select Sample data from input.

3. Set Minutes to 3 and select OK. Three minutes worth of data is then sampled from the input stream and
you are notified when the sample data is ready. You can view the status of sampling from the notification
bar.

The sample data is stored temporarily and is available while you have the query window open. If you close
the query window, the sample data is discarded, and you'll have to create a new set of sample data if you
want to test. Alternatively, you can use a sample data JSON file from GitHub, and then upload that JSON
file to use as sample data for the CallStream input.

https://docs.microsoft.com/stream-analytics-query/datediff-azure-stream-analytics
https://github.com/azure/azure-stream-analytics/blob/master/sample data/telco.json

Start the job and visualize output

4. Select Test to test the query. You should see the following results:

1. To start the job, navigate to the Overview pane of your job and select Start.

2. Select Now for job output start time and select Start. You can view the job status in the notification bar.

3. Once the job succeeds, navigate to Power BI and sign in with your work or school account. If the Stream
Analytics job query is outputting results, the ASAdataset dataset you created exists under the Datasets tab.

4. From your Power BI workspace, select + Create to create a new dashboard named Fraudulent Calls.

5. At the top of the window, select Add tile. Then select Custom Streaming Data and Next. Choose the

https://powerbi.com/

Embedding your Power BI Dashboard in a Web Application

ASAdataset under Your Datasets. Select Card from the Visualization type dropdown, and add
fraudulent calls to Fields. Select Next to enter a name for the tile, and then select Apply to create the tile.

6. Follow the step 5 again with the following options:

When you get to Visualization Type, select Line chart.
Add an axis and select windowend.
Add a value and select fraudulentcalls.
For Time window to display, select the last 10 minutes.

7. Your dashboard should look like the example below once both tiles are added. Notice that, if your event hub
sender application and Streaming Analytics application are running, your Power BI dashboard periodically
updates as new data arrives.

For this part of the tutorial, you'll use a sample ASP.NET web application created by the Power BI team to embed
your dashboard. For more information about embedding dashboards, see embedding with Power BI article.

To set up the application, go to the PowerBI-Developer-Samples GitHub repository and follow the instructions
under the User Owns Data section (use the redirect and homepage URLs under the integrate-web-app

https://asp.net/
https://docs.microsoft.com/power-bi/developer/embedding
https://github.com/microsoft/powerbi-developer-samples

Next steps

subsection). Since we are using the Dashboard example, use the integrate-web-app sample code located in the
GitHub repository. Once you've got the application running in your browser, follow these steps to embed the
dashboard you created earlier into the web page:

1. Select Sign in to Power BI, which grants the application access to the dashboards in your Power BI
account.

2. Select the Get Dashboards button, which displays your account's Dashboards in a table. Find the name of
the dashboard you created earlier, powerbi-embedded-dashboard, and copy the corresponding
EmbedUrl.

3. Finally, paste the EmbedUrl into the corresponding text field and select Embed Dashboard. You can now
view the same dashboard embedded within a web application.

In this tutorial, you created a simple Stream Analytics job, analyzed the incoming data, and presented results in a
Power BI dashboard. To learn more about Stream Analytics jobs, continue to the next tutorial:

Run Azure Functions within Stream Analytics jobs

https://github.com/microsoft/powerbi-developer-samples/tree/master/user owns data/integrate-web-app

Tutorial: Run Azure Functions from Azure Stream
Analytics jobs
7 minutes to read • Edit Online

Configure a Stream Analytics job to run a function

Create a Stream Analytics job with Event Hubs as input

Create an Azure Cache for Redis instance

You can run Azure Functions from Azure Stream Analytics by configuring Functions as one of the output sinks to
the Stream Analytics job. Functions are an event-driven, compute-on-demand experience that lets you implement
code that is triggered by events occurring in Azure or third-party services. This ability of Functions to respond to
triggers makes it a natural output to Stream Analytics jobs.

Stream Analytics invokes Functions through HTTP triggers. The Functions output adapter allows users to connect
Functions to Stream Analytics, such that the events can be triggered based on Stream Analytics queries.

In this tutorial, you learn how to:

Create and run a Stream Analytics job
Create an Azure Cache for Redis instance
Create an Azure Function
Check Azure Cache for Redis for results

If you don’t have an Azure subscription, create a free account before you begin.

This section demonstrates how to configure a Stream Analytics job to run a function that writes data to Azure
Cache for Redis. The Stream Analytics job reads events from Azure Event Hubs, and runs a query that invokes the
function. This function reads data from the Stream Analytics job, and writes it to Azure Cache for Redis.

Follow the Real-time fraud detection tutorial to create an event hub, start the event generator application, and
create a Stream Analytics job. Skip the steps to create the query and the output. Instead, see the following sections
to set up an Azure Functions output.

1. Create a cache in Azure Cache for Redis by using the steps described in Create a cache.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-with-azure-functions.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-how-to-use-azure-redis-cache

Create a function in Azure Functions that can write data to Azure
Cache for Redis

2. After you create the cache, under Settings, select Access Keys. Make a note of the Primary connection
string.

1. See the Create a function app section of the Functions documentation. This section walks you through how
to create a function app and an HTTP-triggered function in Azure Functions, by using the CSharp language.

2. Browse to the run.csx function. Update it with the following code. Replace "<your Azure Cache for Redis
connection string goes here>" with the Azure Cache for Redis primary connection string that you
retrieved in the previous section.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function

using System;
using System.Net;
using System.Threading.Tasks;
using StackExchange.Redis;
using Newtonsoft.Json;
using System.Configuration;

public static async Task<HttpResponseMessage> Run(HttpRequestMessage req, TraceWriter log)
{
 log.Info($"C# HTTP trigger function processed a request. RequestUri={req.RequestUri}");

 // Get the request body
 dynamic dataArray = await req.Content.ReadAsAsync<object>();

 // Throw an HTTP Request Entity Too Large exception when the incoming batch(dataArray) is greater
than 256 KB. Make sure that the size value is consistent with the value entered in the Stream Analytics
portal.

 if (dataArray.ToString().Length > 262144)
 {
 return new HttpResponseMessage(HttpStatusCode.RequestEntityTooLarge);
 }
 var connection = ConnectionMultiplexer.Connect("<your Azure Cache for Redis connection string goes
here>");
 log.Info($"Connection string.. {connection}");

 // Connection refers to a property that returns a ConnectionMultiplexer
 IDatabase db = connection.GetDatabase();
 log.Info($"Created database {db}");

 log.Info($"Message Count {dataArray.Count}");

 // Perform cache operations using the cache object. For example, the following code block adds few
integral data types to the cache
 for (var i = 0; i < dataArray.Count; i++)
 {
 string time = dataArray[i].time;
 string callingnum1 = dataArray[i].callingnum1;
 string key = time + " - " + callingnum1;
 db.StringSet(key, dataArray[i].ToString());
 log.Info($"Object put in database. Key is {key} and value is {dataArray[i].ToString()}");

 // Simple get of data types from the cache
 string value = db.StringGet(key);
 log.Info($"Database got: {value}");
 }

 return req.CreateResponse(HttpStatusCode.OK, "Got");
}

if (dataArray.ToString().Length > 262144)
 {
 return new HttpResponseMessage(HttpStatusCode.RequestEntityTooLarge);
 }

When Stream Analytics receives the "HTTP Request Entity Too Large" exception from the function, it
reduces the size of the batches it sends to Functions. The following code ensures that Stream Analytics
doesn't send oversized batches. Make sure that the maximum batch count and size values used in the
function are consistent with the values entered in the Stream Analytics portal.

3. In a text editor of your choice, create a JSON file named project.json. Paste the following code, and save it
on your local computer. This file contains the NuGet package dependencies required by the C# function.

{
 "frameworks": {
 "net46": {
 "dependencies": {
 "StackExchange.Redis":"1.1.603",
 "Newtonsoft.Json": "9.0.1"
 }
 }
 }
}

4. Go back to the Azure portal. From the Platform features tab, browse to your function. Under
Development Tools, select App Service Editor.

5. In the App Service Editor, right-click your root directory, and upload the project.json file. After the upload
is successful, refresh the page. You should now see an autogenerated file named project.lock.json. The
autogenerated file contains references to the .dll files that are specified in the project.json file.

Update the Stream Analytics job with the function as output

PROPERTY NAME DESCRIPTION

Output alias A user-friendly name that you use in the job's query to
reference the output.

Import option You can use the function from the current subscription, or
provide the settings manually if the function is located in
another subscription.

Function App Name of your Functions app.

Function Name of the function in your Functions app (name of your
run.csx function).

Max Batch Size Sets the maximum size for each output batch, which is
sent to your function in bytes. By default, this value is set
to 262,144 bytes (256 KB).

Max Batch Count Specifies the maximum number of events in each batch
that is sent to the function. The default value is 100. This
property is optional.

Key Allows you to use a function from another subscription.
Provide the key value to access your function. This
property is optional.

1. Open your Stream Analytics job on the Azure portal.

2. Browse to your function, and select Overview > Outputs > Add. To add a new output, select Azure
Function for the sink option. The Functions output adapter has the following properties:

Check Azure Cache for Redis for results

Error handling and retries

NOTENOTE

Known issues

 SELECT
 System.Timestamp as Time, CS1.CallingIMSI, CS1.CallingNum as CallingNum1,
 CS2.CallingNum as CallingNum2, CS1.SwitchNum as Switch1, CS2.SwitchNum as Switch2
 INTO saop1
 FROM CallStream CS1 TIMESTAMP BY CallRecTime
 JOIN CallStream CS2 TIMESTAMP BY CallRecTime
 ON CS1.CallingIMSI = CS2.CallingIMSI AND DATEDIFF(ss, CS1, CS2) BETWEEN 1 AND 5
 WHERE CS1.SwitchNum != CS2.SwitchNum

telcodatagen.exe 1000 0.2 2

3. Provide a name for the output alias. In this tutorial, it is named saop1, but you can use any name of your
choice. Fill in other details.

4. Open your Stream Analytics job, and update the query to the following. If you did not name your output
sink saop1, remember to change it in the query.

5. Start the telcodatagen.exe application by running the following command in command line. The command
uses the format telcodatagen.exe [#NumCDRsPerHour] [SIM Card Fraud Probability] [#DurationHours] .

6. Start the Stream Analytics job.

1. Browse to the Azure portal, and find your Azure Cache for Redis. Select Console.

2. Use Azure Cache for Redis commands to verify that your data is in Azure Cache for Redis. (The command
takes the format Get {key}.) For example:

Get "12/19/2017 21:32:24 - 123414732"

This command should print the value for the specified key:

If a failure occurs while sending events to Azure Functions, Stream Analytics retries most operations. All http
exceptions are retried until success with the exception of http error 413 (entity too large). An entity too large error
is treated as a data error that is subjected to the retry or drop policy.

The timeout for HTTP requests from Stream Analytics to Azure Functions is set to 100 seconds. If your Azure Functions app
takes more than 100 seconds to process a batch, Stream Analytics errors out.

In the Azure portal, when you try to reset the Max Batch Size/ Max Batch Count value to empty (default), the value
changes back to the previously entered value upon save. Manually enter the default values for these fields in this
case.

The use of HTTP routing on your Azure Functions is currently not supported by Stream Analytics.

https://redis.io/commands
https://docs.microsoft.com/sandbox/functions-recipes/routes?tabs=csharp

Clean up resources

Next steps

Support to connect to Azure Functions hosted in a virtual network is not enabled.

When no longer needed, delete the resource group, the streaming job, and all related resources. Deleting the job
avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can stop it
and restart it later when you need. If you are not going to continue to use this job, delete all resources created by
this quickstart by using the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this tutorial, you have created a simple Stream Analytics job, that runs an Azure Function. To learn more about
Stream Analytics jobs, continue to the next tutorial:

Run JavaScript user-defined functions within Stream Analytics jobs

Tutorial: Azure Stream Analytics JavaScript user-
defined functions
5 minutes to read • Edit Online

JavaScript user-defined functions

Add a JavaScript user-defined function in the Azure portal

Azure Stream Analytics supports user-defined functions written in JavaScript. With the rich set of String, RegExp,
Math, Array, and Date methods that JavaScript provides, complex data transformations with Stream Analytics
jobs become easier to create.

In this tutorial, you learn how to:

Define a JavaScript user-defined function
Add the function to the portal
Define a query that runs the function

If you don't have an Azure subscription, create a free account before you begin.

JavaScript user-defined functions support stateless, compute-only scalar functions that do not require external
connectivity. The return value of a function can only be a scalar (single) value. After you add a JavaScript user-
defined function to a job, you can use the function anywhere in the query, like a built-in scalar function.

Here are some scenarios where you might find JavaScript user-defined functions useful:

Parsing and manipulating strings that have regular expression functions, for example, Regexp_Replace() and
Regexp_Extract()
Decoding and encoding data, for example, binary-to-hex conversion
Performing mathematic computations with JavaScript Math functions
Performing array operations like sort, join, find, and fill

Here are some things that you cannot do with a JavaScript user-defined function in Stream Analytics:

Call out external REST endpoints, for example, performing reverse IP lookup or pulling reference data from an
external source
Perform custom event format serialization or deserialization on inputs/outputs
Create custom aggregates

Although functions like Date.GetDate() or Math.random() are not blocked in the functions definition, you
should avoid using them. These functions do not return the same result every time you call them, and the Azure
Stream Analytics service does not keep a journal of function invocations and returned results. If a function returns
different result on the same events, repeatability is not guaranteed when a job is restarted by you or by the Stream
Analytics service.

To create a simple JavaScript user-defined function under an existing Stream Analytics job, follow these steps:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-javascript-user-defined-functions.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f

NOTENOTE

```javascript
// Convert Hex value to integer.
function hex2Int(hexValue) {
    return parseInt(hexValue, 16);
}
```

Testing JavaScript UDFs

Call a JavaScript user-defined function in a query

```SQL
SELECT
    time,
    UDF.hex2Int(offset) AS IntOffset
INTO
    output
FROM
    InputStream
```

Supported JavaScript objects

These steps work on the Stream Analytics jobs configured to run in the cloud. If your Stream Analytics job is configured to
run on Azure IoT Edge, instead use Visual Studio and write the user-defined function using C#.

1. In the Azure portal, find your Stream Analytics job.

2. Under the Job topology heading, select Functions. An empty list of functions appears.

3. To create a new user-defined function, select + Add.

4. On the New Function blade, for Function Type, select JavaScript. A default function template appears in
the editor.

5. For the UDF alias, enter hex2Int, and change the function implementation as follows:

6. Select Save. Your function appears in the list of functions.
7. Select the new hex2Int function, and check the function definition. All functions have a UDF prefix added to

the function alias. You need to include the prefix when you call the function in your Stream Analytics query. In
this case, you call UDF.hex2Int.

You can test and debug your JavaScript UDF logic in any browser. Debugging and testing the logic of these user-
defined functions is currently not supported in the Stream Analytics portal. Once the function works as expected,
you can add it to the Stream Analytics job as mentioned above and then invoke it directly from your query.

1. In the query editor, under the Job topology heading, select Query.
2. Edit your query, and then call the user-defined function, like this:

3. To upload the sample data file, right-click the job input.
4. To test your query, select Test.

Azure Stream Analytics JavaScript user-defined functions support standard, built-in JavaScript objects. For a list
of these objects, see Global Objects.

https://developer.mozilla.org/docs/web/javascript/reference/global_objects

Stream Analytics and JavaScript type conversionStream Analytics and JavaScript type conversion

STREAM ANALYTICS JAVASCRIPT

bigint Number (JavaScript can only represent integers up to
precisely 2^53)

DateTime Date (JavaScript only supports milliseconds)

double Number

nvarchar(MAX) String

Record Object

Array Array

NULL Null

JAVASCRIPT STREAM ANALYTICS

Number Bigint (if the number is round and between long.MinValue
and long.MaxValue; otherwise, it's double)

Date DateTime

String nvarchar(MAX)

Object Record

Array Array

Null, Undefined NULL

Any other type (for example, a function or error) Not supported (results in runtime error)

Troubleshooting

Other JavaScript user-defined function patterns
Write nested JSON to outputWrite nested JSON to output

There are differences in the types that the Stream Analytics query language and JavaScript support. This table lists
the conversion mappings between the two:

Here are JavaScript-to-Stream Analytics conversions:

JavaScript language is case sensitive and casing of the object fields in JavaScript code must match the casing of
the fields in the incoming data. Please note that jobs with compatibility level 1.0 will convert fields from SQL
SELECT statement to be lowercase. Under compatibility level 1.1 and higher, fields from SELECT statement will
have the same casing as specified in the SQL query.

JavaScript runtime errors are considered fatal, and are surfaced through the Activity log. To retrieve the log, in the
Azure portal, go to your job and select Activity log.

function main(x) {
return JSON.stringify(x);
}

SELECT
 DataString,
 DataValue,
 HexValue,
 UDF.jsonstringify(input) As InputEvent
INTO
 output
FROM
 input PARTITION BY PARTITIONID

Clean up resources

Get help

Next steps

If you have a follow-up processing step that uses a Stream Analytics job output as input, and it requires a JSON
format, you can write a JSON string to output. The next example calls the JSON.stringify() function to pack all
name/value pairs of the input, and then write them as a single string value in output.

JavaScript user-defined function definition:

Sample query:

When no longer needed, delete the resource group, the streaming job, and all related resources. Deleting the job
avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can stop it
and re-start it later when you need. If you are not going to continue to use this job, delete all resources created by
this quickstart by using the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

For additional help, try our Azure Stream Analytics forum.

In this tutorial, you have created a Stream Analytics job that runs a simple JavaScript user-defined function. To
learn more about Stream Analytics, continue to the real-time scenario articles:

Real-time Twitter sentiment analysis in Azure Stream Analytics

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Tutorial: Deploy an Azure Stream Analytics job with
CI/CD using Azure Pipelines
5 minutes to read • Edit Online

Prerequisites

Configure NuGet package dependency

<?xml version="1.0" encoding="utf-8"?>
<packages>
<package id="Microsoft.Azure.StreamAnalytics.CICD" version="1.0.0" targetFramework="net452" />
</packages>

Share your Visual Studio solution to a new Azure Repos Git repo

This tutorial describes how to set up continuous integration and deployment for an Azure Stream Analytics job
using Azure Pipelines.

In this tutorial, you learn how to:

Add source control to your project
Create a build pipeline in Azure Pipelines
Create a release pipeline in Azure Pipelines
Automatically deploy and upgrade an application

Before you start, make sure you have the following:

If you don't have an Azure subscription, create a free account.
Install Visual Studio and the Azure development or Data Storage and Processing workloads.
Create a Stream Analytics project in Visual Studio.
Create an Azure DevOps organization.

In order to do auto build and auto deployment on an arbitrary machine, you need to use the NuGet package
Microsoft.Azure.StreamAnalytics.CICD . It provides the MSBuild, local run, and deployment tools that support the

continuous integration and deployment process of Stream Analytics Visual Studio projects. For more information,
see Stream Analytics CI/CD tools.

Add packages.config to your project directory.

Share your application source files to a project in Azure DevOps so you can generate builds.

1. Create a new local Git repo for your project by selecting Add to Source Control, then Git on the status bar
in the lower right-hand corner of Visual Studio.

2. In the Synchronization view in Team Explorer, select the Publish Git Repo button under Push to Azure
DevOps Services.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-tools-visual-studio-cicd-vsts.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-quick-create-vs
https://visualstudio.microsoft.com/team-services/

Configure continuous delivery with Azure DevOps

3. Verify your email and select your organization in the Azure DevOps Services Domain drop-down. Enter
your repository name and select Publish repository.

Publishing the repo creates a new project in your organization with the same name as the local repo. To
create the repo in an existing project, click Advanced next to Repository name, and select a project. You
can view your code in the browser by selecting See it on the web.

An Azure Pipelines build pipeline describes a workflow comprised of build steps that are executed sequentially.
Learn more about Azure Pipelines build pipelines.

An Azure Pipelines release pipeline describes a workflow that deploys an application package to a cluster. When
used together, the build pipeline and release pipeline execute the entire workflow starting with source files and

https://docs.microsoft.com/azure/devops/pipelines/get-started-designer?view=vsts&tabs=new-nav

Create a build pipelineCreate a build pipeline

ending with a running application in your cluster. Learn more about Azure Pipelines release pipelines.

Open a web browser and navigate to the project you just created in Azure DevOps.

1. Under the Build & Release tab, select Builds, and then +New. Select Azure DevOps Services Git and
Continue.

2. In Select a template, click Empty Process to start with an empty pipeline.

3. Under Triggers, enable continuous integration by checking Enable continuous integration trigger status.
Select Save and queue to manually start a build.

https://docs.microsoft.com/azure/devops/pipelines/release/define-multistage-release-process?view=vsts
https://app.vsaex.visualstudio.com/

4. Builds are also triggered upon push or check-in. To check your build progress, switch to the Builds tab.
Once you verify that the build executes successfully, you must define a release pipeline that deploys your
application to a cluster. Right click on the ellipses next to your build pipeline and select Edit.

5. In Tasks, enter "Hosted" as the Agent queue.

6. In Phase 1, click + and add a NuGet task.

7. Expand Advanced and add $(Build.SourcesDirectory)\packages to Destination directory. Keep the
remaining default NuGet configuration values.

/p:CompilerTaskAssemblyFile="Microsoft.WindowsAzure.StreamAnalytics.Common.CompileService.dll"
/p:ASATargetsFilePath="$(Build.SourcesDirectory)\packages\Microsoft.Azure.StreamAnalytics.CICD.1.0.0\bui
ld\StreamAnalytics.targets"

8. In Phase 1, click + and add a MSBuild task.

9. Change the MSBuild Arguments to the following:

SETTING SUGGESTED VALUE

Subscription Choose your subscription.

Action Create or update resource group

Resource Group Enter a resource group name.

Template [Your solution path]\bin\Debug\Deploy\[Your project
name].JobTemplate.json

Template parameters [Your solution path]\bin\Debug\Deploy\[Your project
name].JobTemplate.parameters.json

10. In Phase 1, click + and add an Azure Resource Group Deployment task.

11. Expand Azure Details and fill out the configuration with the following:

Override template parameters Type the template parameters to override in the textbox.
Example, –storageName fabrikam –adminUsername
$(vmusername) -adminPassword $(password) –
azureKeyVaultName $(fabrikamFibre). This property is
optional, but your build will result in errors if key
parameters are not overridden.

SETTING SUGGESTED VALUE

12. Click Save & Queue to test the build pipeline.

Failed build processFailed build process

Commit and push changes to trigger a releaseCommit and push changes to trigger a release

You may receive errors for null deployment parameters if you did not override template parameters in the Azure
Resource Group Deployment task of your build pipeline. Return to the build pipeline and override the null
parameters to resolve the error.

Verify that the continuous integration pipeline is functioning by checking in some code changes to Azure DevOps.

As you write your code, your changes are automatically tracked by Visual Studio. Commit changes to your local
Git repository by selecting the pending changes icon from the status bar in the bottom right.

1. On the Changes view in Team Explorer, add a message describing your update and commit your changes.

Clean up resources

2. Select the unpublished changes status bar icon or the Sync view in Team Explorer. Select Push to update
your code in Azure DevOps.

Pushing the changes to Azure DevOps Services automatically triggers a build. When the build pipeline
successfully completes, a release is automatically created and starts updating the job on the cluster.

When no longer needed, delete the resource group, the streaming job, and all related resources. Deleting the job
avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can stop it
and re-start it later when you need. If you are not going to continue to use this job, delete all resources created by

Next steps

this tutorial by using the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

To learn more about using Azure Stream Analytics tools for Visual Studio to set up a continuous integration and
deployment process, continue to the set up CI/CD pipeline article:

Continuously integrate and develop with Stream Analytics tools

Tutorial: Write a C# user-defined function for Azure
Stream Analytics job (Preview)
4 minutes to read • Edit Online

Prerequisites

Create a container in your Azure Storage Account

Create a Stream Analytics project in Visual Studio

C# user-defined functions (UDFs) created in Visual Studio allow you to extend the Azure Stream Analytics query
language with your own functions. You can reuse existing code (including DLLs) and use mathematical or complex
logic with C#. There are three ways to implement UDFs: CodeBehind files in a Stream Analytics project, UDFs
from a local C# project, or UDFs from an existing package from a storage account. This tutorial uses the
CodeBehind method to implement a basic C# function. The UDF feature for Stream Analytics jobs is currently in
preview and shouldn't be used in production workloads.

In this tutorial, you learn how to:

Create a C# user defined function using CodeBehind.
Test your Stream Analytics job locally.
Publish your job to Azure.

Before you start, make sure you've completed the following prerequisites:

If you don't have an Azure subscription, create a free account.
Install Stream Analytics tools for Visual Studio and the Azure development or Data Storage and
Processing workloads.
Take a look at the existing [Stream Analytics Edge development guide] if you are building an IoT Edge
job(stream-analytics-tools-for-visual-studio-edge-jobs.md).

The container you create will be used to store the compiled C# package. If you create an Edge job, this storage
account will also be used to deploy the package to your IoT Edge device. Use a dedicated container for each
Stream Analytics job. Reusing the same container for multiple Stream Analytics Edge jobs is not supported. If you
already have a storage account with existing containers, you may use them. If not, you'll need to create a new
container.

1. Start Visual Studio.

2. Select File > New > Project.

3. In the templates list on the left, select Stream Analytics, and then select Azure Stream Analytics Edge
Application or Azure Stream Analytics Application.

4. Input the project Name, Location, and Solution name, and select OK.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-edge-csharp-udf.md
https://azure.microsoft.com/free/?wt.mc_id=a261c142f
https://docs.microsoft.com/azure/storage/blobs/storage-quickstart-blobs-portal

Configure assembly package path

Write a C# UDF with CodeBehind

SETTING SUGGESTED VALUE

Global Storage Settings Resource Choose data source from current account

Global Storage Settings Subscription < your subscription >

Global Storage Settings Storage Account < your storage account >

Custom Code Storage Settings Resource Choose data source from current account

Custom Code Storage Settings Storage Account < your storage account >

Custom Code Storage Settings Container < your storage container >

1. Open Visual Studio and navigate to the Solution Explorer.

2. Double-click the job configuration file, EdgeJobConfig.json .

3. Expand the User-Defined Code Configuration section, and fill out the configuration with the following
suggested values:

A CodeBehind file is a C# file associated with a single ASA query script. Visual Studio tools will automatically zip
the CodeBehind file and upload it to your Azure storage account upon submission. All classes must be defined as
public and all objects must be defined as static public.

1. In Solution Explorer, expand Script.asql to find the Script.asaql.cs CodeBehind file.

2. Replace the code with the following sample:

Implement the UDF

Local testing

 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Linq;
 using System.Text;

 namespace ASAEdgeUDFDemo
 {
 public class Class1
 {
 // Public static function
 public static Int64 SquareFunction(Int64 a)
 {
 return a * a;
 }
 }
 }

 SELECT machine.temperature, udf.ASAEdgeUDFDemo_Class1_SquareFunction(try_cast(machine.temperature
as bigint))
 INTO Output
 FROM Input

1. In Solution Explorer, open the Script.asaql file.

2. Replace the existing query with the following:

1. Download the temperature simulator sample data file.

2. In Solution Explorer, expand Inputs, right-click Input.json, and select Add Local Input.

3. Specify the local input file path for the sample data you downloaded and Save.

https://raw.githubusercontent.com/azure/azure-stream-analytics/master/sample data/temperaturesampledata.json

Debug a UDF

4. Click Run Locally in the script editor. Once the local run has successfully saved the output results, press
any key to see the results in table format.

5. You can also select Open Results Folder to see the raw files in JSON and CSV format.

You can debug your C# UDF locally the same way you debug standard C# code.

1. Add breakpoints in your C# function.

Publish your job to Azure

2. Press F5 to start debugging. The program will stop at your breakpoints as expected.

Once you've tested your query locally, select Submit to Azure in the script editor to publish the job to Azure.

Deploy to IoT Edge devices

Next steps

If you chose to build a Stream Analytics Edge job, this can now be deployed as an IoT Edge module. Follow the
IoT Edge quickstart to create an IoT Hub, register an IoT Edge device, and install and start the IoT Edge runtime
on your device. Then follow the deploy the job tutorial to deploy your Stream Analytics job as an IoT Edge
module.

In this tutorial, you created a simple C# user-defined function using CodeBehind, published your job to Azure, and
deployed the job to Azure or IoT Edge device.

To learn more about the different ways to use C# user-defined functions for Stream Analytics jobs, continue to this
article:

Write C# functions for Azure Stream Analytics

https://docs.microsoft.com/azure/iot-edge/quickstart
https://docs.microsoft.com/azure/iot-edge/tutorial-deploy-stream-analytics#deploy-the-job

Tutorial: Custom .NET deserializers for Azure Stream
Analytics
4 minutes to read • Edit Online

Prerequisites

Create a custom deserializer

Azure Stream Analytics has built-in support for three data formats: JSON, CSV, and Avro. With custom .NET
deserializers, you can read data from other formats such as Protocol Buffer, Bond and other user defined formats
for both cloud and edge jobs.

This tutorial demonstrates how to create a custom .NET deserializer for an Azure Stream Analytics cloud job using
Visual Studio.

In this tutorial, you learn how to:

Create a custom deserializer for protocol buffer.
Create an Azure Stream Analytics job in Visual Studio.
Configure your Stream Analytics job to use the custom deserializer.
Run your Stream Analytics job locally to test the custom deserializer.

If you don't have an Azure subscription, create a free account.

Install Visual Studio 2017 or Visual Studio 2015. Enterprise (Ultimate/Premium), Professional, and
Community editions are supported. Express edition isn't supported.

Install the Stream Analytics tools for Visual Studio or update to the latest version. The following versions of
Visual Studio are supported:

Visual Studio 2015
Visual Studio 2017

Open Cloud Explorer in Visual Studio, and sign in to your Azure subscription.

Create a container in your Azure Storage Account. The container you create will be used to store assets
related to your Stream Analytics job. If you already have a storage account with existing containers, you
may use them. If not, you'll need to create a new container.

1. Open Visual Studio and select File > New > Project. Search for Stream Analytics and select Azure
Stream Analytics Custom Deserializer Project (.NET). Give the project a name, like Protobuf
Deserializer.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/custom-deserializer.md
https://developers.google.com/protocol-buffers/
https://github.com/microsoft/bond
https://azure.microsoft.com/free/?wt.mc_id=a261c142f
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/vs/older-downloads/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

Add an Azure Stream Analytics project

Configure a Stream Analytics job

2. In Solution Explorer, right-click your Protobuf Deserializer project and select Manage NuGet Packages
from the menu. Then install the Microsoft.Azure.StreamAnalytics and Google.Protobuf NuGet
packages.

3. Add the MessageBodyProto class and the MessageBodyDeserializer class to your project.

4. Build the Protobuf Deserializer project.

1. In Solution Explorer, right-click the Protobuf Deserializer solution and select Add > New Project. Under
Azure Stream Analytics > Stream Analytics, choose Azure Stream Analytics Application. Name it
ProtobufCloudDeserializer and select OK.

2. Right-click References under the ProtobufCloudDeserializer Azure Stream Analytics project. Under
Projects, add Protobuf Deserializer. It should be automatically populated for you.

SETTING SUGGESTED VALUE

Global Storage Settings Resource Choose data source from current account

Global Storage Settings Subscription < your subscription >

Global Storage Settings Storage Account < your storage account >

Custom Code Storage Settings Resource Choose data source from current account

Custom Code Storage Settings Storage Account < your storage account >

Custom Code Storage Settings Container < your storage container >

SETTING SUGGESTED VALUE

Source Blob Storage

1. Double-click JobConfig.json. Use the default configurations, except for the following settings:

2. Under Inputs, double-click Input.json. Use the default configurations, except for the following settings:

https://github.com/azure/azure-stream-analytics/blob/master/customdeserializers/protobuf/messagebodyproto.cs
https://github.com/azure/azure-stream-analytics/blob/master/customdeserializers/protobuf/messagebodydeserializer.cs

Execute the Stream Analytics job

Resource Choose data source from current account

Subscription < your subscription >

Storage Account < your storage account >

Container < your storage container >

Event Serialization Format Other (Protobuf, XML, proprietary...)

Resource Load from ASA Project Reference or CodeBehind

CSharp Assembly Name ProtobufDeserializer.dll

Class Name MessageBodyProto.MessageBodyDeserializer

Event Compression Type None

SETTING SUGGESTED VALUE

SELECT * FROM Input

SETTING SUGGESTED VALUE

Input Alias Input

Source Type Data Stream

Event Serialization Format Other (Protobuf, XML, proprietary...)

CSharp Assembly Name ProtobufDeserializer.dll

Class Name MessageBodyProto.MessageBodyDeserializer

Local Input File Path < the file path for the downloaded sample protobuf input
file>

3. Add the following query to the Script.asaql file.

4. Download the sample protobuf input file. In the Inputs folder, right-click Input.json and select Add Local
Input. Then, double-click local_Input.json and configure the following settings:

1. Open Script.asaql and select Run Locally.

2. Observe the results in Stream Analytics Local Run Results.

You have successfully implemented a custom deserializer for your Stream Analytics job! In this tutorial, you tested
the custom deserializer locally. For your actual data, you would properly configure the input and output. Then
submit the job to Azure from Visual Studio to run your job in the cloud using the custom deserializer you just
implemented.

https://github.com/azure/azure-stream-analytics/blob/master/customdeserializers/protobuf/simulatedtemperatureevents.protobuf

Debug your deserializer

Clean up resources

Next steps

You can debug your .NET deserializer locally the same way you debug standard .NET code.

1. Add breakpoints in your function.

2. Press F5 to start debugging. The program will stop at your breakpoints as expected.

When no longer needed, delete the resource group, the streaming job, and all related resources. Deleting the job
avoids billing the streaming units consumed by the job. If you're planning to use the job in future, you can stop it
and restart it later when you need. If you are not going to continue to use this job, delete all resources created by
this tutorial by using the following steps:

1. From the left-hand menu in the Azure portal, select Resource groups and then select the name of the
resource you created.

2. On your resource group page, select Delete, type the name of the resource to delete in the text box, and
then select Delete.

In this tutorial, you learned how to implement a custom .NET deserializer for the protocol buffer input serialization.
To learn more about creating custom deserializers, continue to the following article:

Create different .NET deserializers for Azure Stream Analytics jobs

Choose a real-time analytics and streaming
processing technology on Azure
2 minutes to read • Edit Online

When to use Azure Stream Analytics

When to use other technologies
You want to write UDFs, UDAs, and custom deserializers in a language other than JavaScript or C#You want to write UDFs, UDAs, and custom deserializers in a language other than JavaScript or C#

Your solution is in a multi-cloud or on-premises environmentYour solution is in a multi-cloud or on-premises environment

There are several services available for real-time analytics and streaming processing on Azure. This article provides
the information you need to decide which technology is the best fit for your application.

Azure Stream Analytics is the recommended service for stream analytics on Azure. It's meant for a wide range of
scenarios that include but aren't limited to:

Dashboards for data visualization
Real-time alerts from temporal and spatial patterns or anomalies
Extract, Transform, Load (ETL)
Event Sourcing pattern
IoT Edge

Adding an Azure Stream Analytics job to your application is the fastest way to get streaming analytics up and
running in Azure, using the SQL language you already know. Azure Stream Analytics is a job service, so you don't
have to spend time managing clusters, and you don't have to worry about downtime with a 99.9% SLA at the job
level. Billing is also done at the job level making startup costs low (one Streaming Unit), but scalable (up to 192
Streaming Units). It's much more cost effective to run a few Stream Analytics jobs than it is to run and maintain a
cluster.

Azure Stream Analytics has a rich out-of-the-box experience. You can immediately take advantage of the following
features without any additional setup:

Built-in temporal operators, such as windowed aggregates, temporal joins, and temporal analytic functions.
Native Azure input and output adapters
Support for slow changing reference data (also known as a lookup tables), including joining with geospatial
reference data for geofencing.
Integrated solutions, such as Anomaly Detection
Multiple time windows in the same query
Ability to compose multiple temporal operators in arbitrary sequences.
Under 100-ms end-to-end latency from input arriving at Event Hubs, to output landing in Event Hubs, including
the network delay from and to Event Hubs, at sustained high throughput

Azure Stream Analytics supports user-defined functions (UDF) or user-defined aggregates (UDA) in JavaScript for
cloud jobs and C# for IoT Edge jobs. C# user-defined deserializers are also supported. If you want to implement a
deserializer, a UDF, or a UDA in other languages, such as Java or Python, you can use Spark Structured Streaming.
You can also run the Event Hubs EventProcessorHost on your own virtual machines to do arbitrary streaming
processing.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/streaming-technologies.md
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing

Next steps

Azure Stream Analytics is Microsoft's proprietary technology and is only available on Azure. If you need your
solution to be portable across Clouds or on-premises, consider open-source technologies such as Spark Structured
Streaming or Storm.

Create a Stream Analytics job by using the Azure portal
Create a Stream Analytics job by using Azure PowerShell
Create a Stream Analytics job by using Visual Studio
Create a Stream Analytics job by using Visual Studio Code

Azure Stream Analytics feature comparison
2 minutes to read • Edit Online

Cloud job features
FEATURE PORTAL VISUAL STUDIO VISUAL STUDIO CODE

Cross platform Mac
Linux
Windows

Windows Mac
Linux
Windows

Script authoring Yes Yes Yes

Script Intellisense Syntax highlighting Syntax highlighting
Code completion
Error marker

Syntax highlighting
Code completion
Error marker

Define all types of inputs,
outputs, and job
configurations

Yes Yes Yes

Source control No Yes Yes

CI/CD support Partial Yes Yes

Share inputs and outputs
across multiple queries

No Yes Yes

Query testing with a sample
file

Yes Yes Yes

Live data local testing No Yes Yes

List jobs and view job
entities

Yes Yes Yes

Export a job to a local
project

No Yes Yes

Submit, start, and stop jobs Yes Yes Yes

View job metrics and
diagram

Yes Yes Open in portal

View job runtime errors Yes Yes No

Diagnostic logs Yes No No

With Azure Stream Analytics, you can create streaming solutions in the cloud and at the IoT Edge using Azure
portal, Visual Studio, and Visual Studio Code. The tables in this article show which features are supported by each
platform for both job types.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/feature-comparison.md

Custom message properties Yes Yes No

C# custom code function
and Deserializer

Read-only mode Yes No

JavaScript UDF and UDA Yes Yes Windows only

Machine Learning Service Yes, but the query cannot be
tested

Yes No

Machine Learning Studio Yes, but the query cannot be
tested

Yes No

Compatibility level 1.0
1.1
1.2 (default)

1.0
1.1
1.2 (default)

1.0
1.1
1.2 (default)

Built-in ML-based Anomaly
Detection functions

Yes Yes Yes

Built-in GeoSpatial functions Yes Yes Yes

FEATURE PORTAL VISUAL STUDIO VISUAL STUDIO CODE

IoT Edge job features
FEATURE PORTAL VISUAL STUDIO VISUAL STUDIO CODE

Job authoring Yes Yes No

Source control No Yes No

Export a job to a local
project

No Yes No

Query testing with a sample
file

Yes Yes No

Share inputs and outputs
across multiple queries

No Yes No

C# UDF No Yes No

Submit jobs Yes Yes No

List jobs and view job
entities

Yes Yes No

View job metrics and
diagram

Yes Partial No

View job runtime errors Yes Partial No

CI/CD support No No No

FEATURE PORTAL VISUAL STUDIO VISUAL STUDIO CODE

Next steps
Azure Stream Analytics on IoT Edge
Tutorial: Write a C# user-defined function for Azure Stream Analytics IoT Edge job (Preview)
Develop Stream Analytics IoT Edge jobs using Visual Studio tools
Use Visual Studio to view Azure Stream Analytics jobs
Explore Azure Stream Analytics with Visual Studio Code (Preview)

Understand inputs for Azure Stream Analytics
2 minutes to read • Edit Online

Stream and reference inputs

Data stream inputData stream input

Reference data inputReference data input

Next steps

Azure Stream Analytics jobs connect to one or more data inputs. Each input defines a connection to an existing
data source. Stream Analytics accepts data incoming from several kinds of event sources including Event Hubs, IoT
Hub, and Blob storage. The inputs are referenced by name in the streaming SQL query that you write for each job.
In the query, you can join multiple inputs to blend data or compare streaming data with a lookup to reference data,
and pass the results to outputs.

Stream Analytics has first-class integration with three kinds of resources as inputs:

Azure Event Hubs
Azure IoT Hub
Azure Blob storage

These input resources can live in the same Azure subscription as your Stream Analytics job, or from a different
subscription.

You can use the Azure portal, Azure PowerShell, .NET API, REST API, and Visual Studio to create, edit, and test
Stream Analytics job inputs.

As data is pushed to a data source, it's consumed by the Stream Analytics job and processed in real time. Inputs
are divided into two types: data stream inputs and reference data inputs.

A data stream is an unbounded sequence of events over time. Stream Analytics jobs must include at least one data
stream input. Event Hubs, IoT Hub, and Blob storage are supported as data stream input sources. Event Hubs are
used to collect event streams from multiple devices and services. These streams might include social media activity
feeds, stock trade information, or data from sensors. IoT Hubs are optimized to collect data from connected
devices in Internet of Things (IoT) scenarios. Blob storage can be used as an input source for ingesting bulk data as
a stream, such as log files.

For more information about streaming data inputs, see Stream data as input into Stream Analytics

Stream Analytics also supports input known as reference data. Reference data is either completely static or
changes slowly. It is typically used to perform correlation and lookups. For example, you might join data in the data
stream input to data in the reference data, much as you would perform a SQL join to look up static values. Azure
Blob storage and Azure SQL Database are currently supported as input sources for reference data. Reference data
source blobs have a limit of up to 300 MB in size, depending on the query complexity and allocated Streaming
Units (see the Size limitation section of the reference data documentation for more details).

For more information about reference data inputs, see Using reference data for lookups in Stream Analytics

Quickstart: Create a Stream Analytics job by using the Azure portal

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-add-inputs.md
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/storage/blobs/
https://docs.microsoft.com/powershell/module/az.streamanalytics/new-azstreamanalyticsinput
https://docs.microsoft.com/dotnet/api/microsoft.azure.management.streamanalytics.inputsoperationsextensions
https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-input

Stream data as input into Stream Analytics
11 minutes to read • Edit Online

CompressionCompression

Create, edit, or test inputs

Stream data from Event Hubs

Event Hubs Consumer groupsEvent Hubs Consumer groups

Create an input from Event HubsCreate an input from Event Hubs

Stream Analytics has first-class integration with Azure data streams as inputs from three kinds of resources:

Azure Event Hubs
Azure IoT Hub
Azure Blob storage

These input resources can live in the same Azure subscription as your Stream Analytics job or a different
subscription.

Stream Analytics supports compression across all data stream input sources. Supported compression types are:
None, GZip, and Deflate compression. Support for compression is not available for reference data. If the input
format is Avro data that is compressed, it's handled transparently. You don't need to specify compression type with
Avro serialization.

You can use the Azure portal, Visual Studio, and Visual Studio Code to add and view or edit existing inputs on your
streaming job. You can also test input connections and test queries from sample data from the Azure portal, Visual
Studio, and Visual Studio Code. When you write a query, you list the input in the FROM clause. You can get the list
of available inputs from the Query page in the portal. If you wish to use multiple inputs, you can JOIN them or
write multiple SELECT queries.

Azure Event Hubs provides highly scalable publish-subscribe event ingestors. An event hub can collect millions of
events per second so that you can process and analyze the massive amounts of data produced by your connected
devices and applications. Together, Event Hubs and Stream Analytics provide an end-to-end solution for real-time
analytics. Event Hubs lets you feed events into Azure in real-time, and Stream Analytics jobs can process those
events in real-time. For example, you can send web clicks, sensor readings, or online log events to Event Hubs. You
can then create Stream Analytics jobs to use Event Hubs as the input data streams for real-time filtering,
aggregating, and correlation.

EventEnqueuedUtcTime is the timestamp of an event's arrival in an event hub and is the default timestamp of events
coming from Event Hubs to Stream Analytics. To process the data as a stream using a timestamp in the event
payload, you must use the TIMESTAMP BY keyword.

You should configure each Stream Analytics event hub input to have its own consumer group. When a job contains
a self-join or has multiple inputs, some inputs might be read by more than one reader downstream. This situation
impacts the number of readers in a single consumer group. To avoid exceeding the Event Hubs limit of five readers
per consumer group per partition, it's a best practice to designate a consumer group for each Stream Analytics job.
There is also a limit of 20 consumer groups for a Standard tier event hub. For more information, see Troubleshoot
Azure Stream Analytics inputs.

The following table explains each property in the New input page in the Azure portal to stream data input from

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-define-inputs.md
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/storage/blobs/
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics

PROPERTY DESCRIPTION

Input alias A friendly name that you use in the job's query to reference
this input.

Subscription Choose the subscription in which the Event hub resource
exists.

Event Hub namespace The Event Hub namespace is a container for a set of
messaging entities. When you create a new event hub, you
also create the namespace.

Event Hub name The name of the event hub to use as input.

Event Hub policy name The shared access policy that provides access to the Event
Hub. Each shared access policy has a name, permissions that
you set, and access keys. This option is automatically
populated, unless you select the option to provide the Event
Hub settings manually.

Event Hub consumer group (recommended) It is highly recommended to use a distinct consumer group for
each Stream Analytics job. This string identifies the consumer
group to use to ingest data from the event hub. If no
consumer group is specified, the Stream Analytics job uses the
$Default consumer group.

Partition key If your input is partitioned by a property, you can add the
name of this property. Partition keys are optional and is used
to improve the performance of your query if it includes a
PARTITION BY or GROUP BY clause on this property.

Event serialization format The serialization format (JSON, CSV, Avro, or Other (Protobuf,
XML, proprietary...)) of the incoming data stream. Ensure the
JSON format aligns with the specification and doesn’t include
leading 0 for decimal numbers.

Encoding UTF-8 is currently the only supported encoding format.

Event compression type The compression type used to read the incoming data stream,
such as None (default), GZip, or Deflate.

PROPERTY DESCRIPTION

EventProcessedUtcTime The date and time that the event was processed by Stream
Analytics.

EventEnqueuedUtcTime The date and time that the event was received by Event Hubs.

PartitionId The zero-based partition ID for the input adapter.

an event hub:

When your data comes from an Event Hub stream input, you have access to the following metadata fields in your
Stream Analytics query:

For example, using these fields, you can write a query like the following example:

SELECT
 EventProcessedUtcTime,
 EventEnqueuedUtcTime,
 PartitionId
FROM Input

NOTENOTE

Stream data from IoT Hub

Iot Hub Consumer groupsIot Hub Consumer groups

Configure an IoT Hub as a data stream inputConfigure an IoT Hub as a data stream input

PROPERTY DESCRIPTION

Input alias A friendly name that you use in the job's query to reference
this input.

Subscription Choose the subscription in which the IoT Hub resource exists.

IoT Hub The name of the IoT Hub to use as input.

Endpoint The endpoint for the IoT Hub.

Shared access policy name The shared access policy that provides access to the IoT Hub.
Each shared access policy has a name, permissions that you
set, and access keys.

Shared access policy key The shared access key used to authorize access to the IoT
Hub. This option is automatically populated in unless you
select the option to provide the Iot Hub settings manually.

Consumer group It is highly recommended that you use a different consumer
group for each Stream Analytics job. The consumer group is
used to ingest data from the IoT Hub. Stream Analytics uses
the $Default consumer group unless you specify otherwise.

When using Event Hub as an endpoint for IoT Hub Routes, you can access to the IoT Hub metadata using the
GetMetadataPropertyValue function.

Azure IoT Hub is a highly scalable publish-subscribe event ingestor optimized for IoT scenarios.

The default timestamp of events coming from an IoT Hub in Stream Analytics is the timestamp that the event
arrived in the IoT Hub, which is EventEnqueuedUtcTime . To process the data as a stream using a timestamp in the
event payload, you must use the TIMESTAMP BY keyword.

You should configure each Stream Analytics IoT Hub input to have its own consumer group. When a job contains a
self-join or when it has multiple inputs, some input might be read by more than one reader downstream. This
situation impacts the number of readers in a single consumer group. To avoid exceeding the Azure IoT Hub limit of
five readers per consumer group per partition, it's a best practice to designate a consumer group for each Stream
Analytics job.

The following table explains each property in the New input page in the Azure portal when you configure an IoT
Hub as a stream input.

https://docs.microsoft.com/stream-analytics-query/getmetadatapropertyvalue
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics

Partition key If your input is partitioned by a property, you can add the
name of this property. Partition keys are optional and is used
to improve the performance of your query if it includes a
PARTITION BY or GROUP BY clause on this property.

Event serialization format The serialization format (JSON, CSV, Avro, or Other (Protobuf,
XML, proprietary...)) of the incoming data stream. Ensure the
JSON format aligns with the specification and doesn’t include
leading 0 for decimal numbers.

Encoding UTF-8 is currently the only supported encoding format.

Event compression type The compression type used to read the incoming data stream,
such as None (default), GZip, or Deflate.

PROPERTY DESCRIPTION

PROPERTY DESCRIPTION

EventProcessedUtcTime The date and time that the event was processed.

EventEnqueuedUtcTime The date and time that the event was received by the IoT Hub.

PartitionId The zero-based partition ID for the input adapter.

IoTHub.MessageId An ID that's used to correlate two-way communication in IoT
Hub.

IoTHub.CorrelationId An ID that's used in message responses and feedback in IoT
Hub.

IoTHub.ConnectionDeviceId The authentication ID used to send this message. This value is
stamped on servicebound messages by the IoT Hub.

IoTHub.ConnectionDeviceGenerationId The generation ID of the authenticated device that was used
to send this message. This value is stamped on servicebound
messages by the IoT Hub.

IoTHub.EnqueuedTime The time when the message was received by the IoT Hub.

Stream data from Blob storage

When you use stream data from an IoT Hub, you have access to the following metadata fields in your Stream
Analytics query:

For scenarios with large quantities of unstructured data to store in the cloud, Azure Blob storage offers a cost-
effective and scalable solution. Data in Blob storage is usually considered data at rest; however, blob data can be
processed as a data stream by Stream Analytics.

Log processing is a commonly used scenario for using Blob storage inputs with Stream Analytics. In this scenario,
telemetry data files have been captured from a system and need to be parsed and processed to extract meaningful
data.

The default timestamp of Blob storage events in Stream Analytics is the timestamp that the blob was last modified,
which is BlobLastModifiedUtcTime . If a blob is uploaded to a storage account at 13:00, and the Azure Stream

NOTENOTE

Configure Blob storage as a stream inputConfigure Blob storage as a stream input

PROPERTY DESCRIPTION

Input alias A friendly name that you use in the job's query to reference
this input.

Subscription Choose the subscription in which the IoT Hub resource exists.

Storage account The name of the storage account where the blob files are
located.

Storage account key The secret key associated with the storage account. This
option is automatically populated in unless you select the
option to provide the Blob storage settings manually.

Container The container for the blob input. Containers provide a logical
grouping for blobs stored in the Microsoft Azure Blob service.
When you upload a blob to the Azure Blob storage service,
you must specify a container for that blob. You can choose
either Use existing container or Create new to have a new
container created.

Analytics job is started using the option Now at 13:01, the blob will not be picked up as its modified time falls
outside the job run period.

If a blob is uploaded to a storage account container at 13:00, and the Azure Stream Analytics job is started using
Custom Time at 13:00 or earlier, the blob will be picked up as its modified time falls inside the job run period.

If an Azure Stream Analytics job is started using Now at 13:00, and a blob is uploaded to the storage account
container at 13:01, Azure Stream Analytics will pick up the blob.

To process the data as a stream using a timestamp in the event payload, you must use the TIMESTAMP BY
keyword. A Stream Analytics job pulls data from Azure Blob storage input every second if the blob file is available.
If the blob file is unavailable, there is an exponential backoff with a maximum time delay of 90 seconds.

CSV-formatted inputs require a header row to define fields for the data set, and all header row fields must be
unique.

Stream Analytics does not support adding content to an existing blob file. Stream Analytics will view each file only once, and
any changes that occur in the file after the job has read the data are not processed. Best practice is to upload all the data for
a blob file at once and then add additional newer events to a different, new blob file.

Uploading a very large number of blobs at once might cause Stream Analytics to skip reading few blobs in rare
cases. It is recommended to upload blobs at least 2 seconds apart to Blob storage. If this option is not feasible, you
can use Event Hubs to stream large volumes of events.

The following table explains each property in the New input page in the Azure portal when you configure Blob
storage as a stream input.

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

Path pattern (optional) The file path used to locate the blobs within the specified
container. If you want to read blobs from the root of the
container, do not set a path pattern. Within the path, you can
specify one or more instances of the following three variables:
{date} , {time} , or {partition}

Example 1: cluster1/logs/{date}/{time}/{partition}

Example 2: cluster1/logs/{date}

The * character is not an allowed value for the path prefix.
Only valid Azure blob characters are allowed. Do not include
container names or file names.

Date format (optional) If you use the date variable in the path, the date format in
which the files are organized. Example: YYYY/MM/DD

Time format (optional) If you use the time variable in the path, the time format in
which the files are organized. Currently the only supported
value is HH for hours.

Partition key If your input is partitioned by a property, you can add the
name of this property. Partition keys are optional and is used
to improve the performance of your query if it includes a
PARTITION BY or GROUP BY clause on this property.

Event serialization format The serialization format (JSON, CSV, Avro, or Other (Protobuf,
XML, proprietary...)) of the incoming data stream. Ensure the
JSON format aligns with the specification and doesn’t include
leading 0 for decimal numbers.

Encoding For CSV and JSON, UTF-8 is currently the only supported
encoding format.

Compression The compression type used to read the incoming data stream,
such as None (default), GZip, or Deflate.

PROPERTY DESCRIPTION

PROPERTY DESCRIPTION

BlobName The name of the input blob that the event came from.

EventProcessedUtcTime The date and time that the event was processed by Stream
Analytics.

BlobLastModifiedUtcTime The date and time that the blob was last modified.

PartitionId The zero-based partition ID for the input adapter.

When your data comes from a Blob storage source, you have access to the following metadata fields in your
Stream Analytics query:

For example, using these fields, you can write a query like the following example:

https://msdn.microsoft.com/library/azure/dd135715.aspx

SELECT
 BlobName,
 EventProcessedUtcTime,
 BlobLastModifiedUtcTime
FROM Input

Next steps
Quickstart: Create a Stream Analytics job by using the Azure portal

Using reference data for lookups in Stream Analytics
9 minutes to read • Edit Online

Azure Blob storage

Configure blob reference dataConfigure blob reference data

PROPERTY NAME DESCRIPTION

Input Alias A friendly name that will be used in the job query to reference
this input.

Storage Account The name of the storage account where your blobs are
located. If it’s in the same subscription as your Stream
Analytics Job, you can select it from the drop-down.

Storage Account Key The secret key associated with the storage account. This gets
automatically populated if the storage account is in the same
subscription as your Stream Analytics job.

Storage Container Containers provide a logical grouping for blobs stored in the
Microsoft Azure Blob service. When you upload a blob to the
Blob service, you must specify a container for that blob.

Path Pattern The path used to locate your blobs within the specified
container. Within the path, you may choose to specify one or
more instances of the following 2 variables:
{date}, {time}
Example 1: products/{date}/{time}/product-list.csv
Example 2: products/{date}/product-list.csv
Example 3: product-list.csv

If the blob doesn't exist in the specified path, the Stream
Analytics job will wait indefinitely for the blob to become
available.

Reference data (also known as a lookup table) is a finite data set that is static or slowly changing in nature, used to
perform a lookup or to augment your data streams. For example, in an IoT scenario, you could store metadata
about sensors (which don’t change often) in reference data and join it with real time IoT data streams. Azure
Stream Analytics loads reference data in memory to achieve low latency stream processing. To make use of
reference data in your Azure Stream Analytics job, you will generally use a Reference Data Join in your query.

Stream Analytics supports Azure Blob storage and Azure SQL Database as the storage layer for Reference Data.
You can also transform and/or copy reference data to Blob storage from Azure Data Factory to use any number of
cloud-based and on-premises data stores.

Reference data is modeled as a sequence of blobs (defined in the input configuration) in ascending order of the
date/time specified in the blob name. It only supports adding to the end of the sequence by using a date/time
greater than the one specified by the last blob in the sequence.

To configure your reference data, you first need to create an input that is of type Reference Data. The table below
explains each property that you will need to provide while creating the reference data input with its description:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-use-reference-data.md
https://docs.microsoft.com/stream-analytics-query/reference-data-join-azure-stream-analytics
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview

Date Format [optional] If you have used {date} within the Path Pattern that you
specified, then you can select the date format in which your
blobs are organized from the drop-down of supported
formats.
Example: YYYY/MM/DD, MM/DD/YYYY, etc.

Time Format [optional] If you have used {time} within the Path Pattern that you
specified, then you can select the time format in which your
blobs are organized from the drop-down of supported
formats.
Example: HH, HH/mm, or HH-mm.

Event Serialization Format To make sure your queries work the way you expect, Stream
Analytics needs to know which serialization format you're
using for incoming data streams. For Reference Data, the
supported formats are CSV and JSON.

Encoding UTF-8 is the only supported encoding format at this time.

PROPERTY NAME DESCRIPTION

Static reference dataStatic reference data

Generate reference data on a scheduleGenerate reference data on a schedule

If your reference data is not expected to change, then support for static reference data is enabled by specifying a
static path in the input configuration. Azure Stream Analytics picks up the blob from the specified path. {date} and
{time} substitution tokens aren't required. Because reference data is immutable in Stream Analytics, overwriting a
static reference data blob is not recommended.

If your reference data is a slowly changing data set, then support for refreshing reference data is enabled by
specifying a path pattern in the input configuration using the {date} and {time} substitution tokens. Stream
Analytics picks up the updated reference data definitions based on this path pattern. For example, a pattern of
sample/{date}/{time}/products.csv with a date format of "YYYY-MM-DD" and a time format of "HH-mm"

instructs Stream Analytics to pick up the updated blob sample/2015-04-16/17-30/products.csv at 5:30 PM on April
16th, 2015 UTC time zone.

Azure Stream Analytics automatically scans for refreshed reference data blobs at a one minute interval. If a blob
with timestamp 10:30:00 is uploaded with a small delay (for example, 10:30:30), you will notice a small delay in
Stream Analytics job referencing this blob. To avoid such scenarios, it is recommended to upload the blob earlier
than the target effective time (10:30:00 in this example) to allow the Stream Analytics job enough time to discover
and load it in memory and perform operations.

NOTENOTE

Tips on refreshing blob reference dataTips on refreshing blob reference data

Azure SQL Database

Currently Stream Analytics jobs look for the blob refresh only when the machine time advances to the time encoded in the
blob name. For example, the job will look for sample/2015-04-16/17-30/products.csv as soon as possible but no earlier
than 5:30 PM on April 16th, 2015 UTC time zone. It will never look for a blob with an encoded time earlier than the last one
that is discovered.

For example, once the job finds the blob sample/2015-04-16/17-30/products.csv it will ignore any files with an encoded
date earlier than 5:30 PM April 16th, 2015 so if a late arriving sample/2015-04-16/17-25/products.csv blob gets created
in the same container the job will not use it.

Likewise if sample/2015-04-16/17-30/products.csv is only produced at 10:03 PM April 16th, 2015 but no blob with an
earlier date is present in the container, the job will use this file starting at 10:03 PM April 16th, 2015 and use the previous
reference data until then.

An exception to this is when the job needs to re-process data back in time or when the job is first started. At start time the
job is looking for the most recent blob produced before the job start time specified. This is done to ensure that there is a
non-empty reference data set when the job starts. If one cannot be found, the job displays the following diagnostic:
Initializing input without a valid reference data blob for UTC time <start time> .

Azure Data Factory can be used to orchestrate the task of creating the updated blobs required by Stream Analytics
to update reference data definitions. Data Factory is a cloud-based data integration service that orchestrates and
automates the movement and transformation of data. Data Factory supports connecting to a large number of
cloud based and on-premises data stores and moving data easily on a regular schedule that you specify. For more
information and step by step guidance on how to set up a Data Factory pipeline to generate reference data for
Stream Analytics which refreshes on a pre-defined schedule, check out this GitHub sample.

1. Do not overwrite reference data blobs as they are immutable.
2. The recommended way to refresh reference data is to:

3. Reference data blobs are not ordered by the blob’s "Last Modified" time but only by the time and date
specified in the blob name using the {date} and {time} substitutions.

4. To avoid having to list large number of blobs, consider deleting very old blobs for which processing will no
longer be done. Please note that ASA might go have to reprocess a small amount in some scenarios like a
restart.

Use {date}/{time} in the path pattern
Add a new blob using the same container and path pattern defined in the job input
Use a date/time greater than the one specified by the last blob in the sequence.

Azure SQL Database reference data is retrieved by your Stream Analytics job and is stored as a snapshot in
memory for processing. The snapshot of your reference data is also stored in a container in a storage account that
you specify in the configuration settings. The container is auto-created when the job starts. If the job is stopped or
enters a failed state, the auto-created containers are deleted when the job is restarted.

If your reference data is a slowly changing data set, you need to periodically refresh the snapshot that is used in
your job. Stream Analytics allows you to set a refresh rate when you configure your Azure SQL Database input
connection. The Stream Analytics runtime will query your Azure SQL Database at the interval specified by the
refresh rate. The fastest refresh rate supported is once per minute. For each refresh, Stream Analytics stores a new
snapshot in the storage account provided.

Stream Analytics provides two options for querying your Azure SQL Database. A snapshot query is mandatory
and must be included in each job. Stream Analytics runs the snapshot query periodically based on your refresh

https://azure.microsoft.com/documentation/services/data-factory/
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview
https://github.com/azure/azure-datafactory/tree/master/samplesv1/referencedatarefreshforasajobs

Configure SQL Database referenceConfigure SQL Database reference

PROPERTY NAME DESCRIPTION

Input alias A friendly name that will be used in the job query to reference
this input.

Subscription Choose your subscription

Database The Azure SQL Database that contains your reference data.
For Azure SQL Database Managed Instance, it is required to
specify the port 3342. For example,
sampleserver.public.database.windows.net,3342

Username The username associated with your Azure SQL Database.

Password The password associated with your Azure SQL Database.

Refresh periodically This option allows you to choose a refresh rate. Choosing
"On" will allow you to specify the refresh rate in DD:HH:MM.

Snapshot query This is the default query option that retrieves the reference
data from your SQL Database.

Delta query For advanced scenarios with large data sets and a short
refresh rate, choose to add a delta query.

Size limitation

interval and uses the result of the query (the snapshot) as the reference data set. The snapshot query should fit
most scenarios, but if you run into performance issues with large data sets and fast refresh rates, you can use the
delta query option. Queries that take more than 60 seconds to return reference data set will result in a timeout.

With the delta query option, Stream Analytics runs the snapshot query initially to get a baseline reference data
set. After, Stream Analytics runs the delta query periodically based on your refresh interval to retrieve incremental
changes. These incremental changes are continually applied to the reference data set to keep it updated. Using
delta query may help reduce storage cost and network I/O operations.

To configure your SQL Database reference data, you first need to create Reference Data input. The table below
explains each property that you will need to provide while creating the reference data input with its description.
For more information, see Use reference data from a SQL Database for an Azure Stream Analytics job.

You can use Azure SQL Database Managed Instance as a reference data input. You have to configure public
endpoint in Azure SQL Database Managed Instance and then manually configure the following settings in Azure
Stream Analytics. Azure virtual machine running SQL Server with a database attached is also supported by
manually configuring the settings below.

Stream Analytics supports reference data with maximum size of 300 MB. The 300 MB limit of maximum size of
reference data is achievable only with simple queries. As the complexity of query increases to include stateful
processing, such as windowed aggregates, temporal joins and temporal analytic functions, it is expected that the
maximum supported size of reference data decreases. If Azure Stream Analytics cannot load the reference data
and perform complex operations, the job will run out of memory and fail. In such cases, SU % Utilization metric
will reach 100%.

https://docs.microsoft.com/azure/sql-database/sql-database-managed-instance
https://docs.microsoft.com/azure/sql-database/sql-database-managed-instance-public-endpoint-configure

NUMBER OF STREAMING UNITS APPROX. MAX SIZE SUPPORTED (IN MB)

1 50

3 150

6 and beyond 300

Next steps

Increasing number of Streaming Units of a job beyond 6 does not increase the maximum supported size of
reference data.

Support for compression is not available for reference data.

Quickstart: Create a Stream Analytics job by using the Azure portal

Read input in any format using .NET custom
deserializers
4 minutes to read • Edit Online

.NET custom deserializer

 public abstract class UserDefinedOperator
 {
 public abstract void Initialize(StreamingContext streamingContext);
 }

 public abstract class StreamDeserializer<T> : UserDefinedOperator
 {
 public abstract IEnumerable<T> Deserialize(Stream stream);
 }

.NET custom deserializers allow your Azure Stream Analytics job to read data from formats outside of the three
built-in data formats. This article explains the serialization format and the interfaces that define .NET custom
deserializers for Azure Stream Analytics cloud and edge jobs. There are also example deserializers for Protocol
Buffer and CSV format.

Following code samples are the interfaces that define the custom deserializer and implement
StreamDeserializer<T> .

UserDefinedOperator is the base class for all custom streaming operators. It initializes StreamingContext , which
provides context which includes mechanism for publishing diagnostics for which you will need to debug any issues
with your deserializer.

The following code snippet is the deserialization for streaming data.

Skippable errors should be emitted using IStreamingDiagnostics passed through UserDefinedOperator 's Initialize
method. All exceptions will be treated as errors and the deserializer will be recreated. After a certain number of
errors, the job will go to a failed status.

StreamDeserializer<T> deserializes a stream into object of type T . The following conditions must be met:

1. T is a class or a struct.
2. All public fields in T are either

a. One of [sbyte, byte, short, ushort, int, uint, long, DateTime, string, float, double] or their nullable
equivalents.

b. Another struct or class following the same rules.
c. Array of type T2 that follows the same rules.
d. IList T2 where T2 follows the same rules.
e. Does not have any recursive types.

The parameter stream is the stream containing the serialized object. Deserialize returns a collection of T

instances.

StreamingContext provides context which includes mechanism for publishing diagnostics for user operator.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/custom-deserializer-examples.md

 public abstract class StreamingContext
 {
 public abstract StreamingDiagnostics Diagnostics { get; }
 }

 public abstract class StreamingDiagnostics
 {
 public abstract void WriteError(string briefMessage, string detailedMessage);
 }

Deserializer examples

Protocol buffer (Protobuf) formatProtocol buffer (Protobuf) format

syntax = "proto3";
// protoc.exe from nuget "Google.Protobuf.Tools" is used to generate .cs file from this schema definition.
// Run below command to generate the csharp class
// protoc.exe --csharp_out=. MessageBodyProto.proto

package SimulatedTemperatureSensor;
message MessageBodyProto {
 message Ambient {
 double temperature = 1;
 int64 humidity = 2;
 }

 message Machine {
 double temperature = 1;
 double pressure = 2;
 }

 Machine machine = 1;
 Ambient ambient = 2;
 string timeCreated = 3;
}

StreamingDiagnostics is the diagnostics for user defined operators including serializer, deserializer, and user
defined functions.

WriteError writes an error message to diagnostic logs and sends the error to diagnostics.

briefMessage is a brief error message. This message shows up in diagnostics and is used by the product team for
debugging purposes. Do not include sensitive information, and keep the message less than 200 characters

detailedMessage is a detailed error message that is only added to your diagnostic logs in your storage. This
message should be less than 2000 characters.

This section shows you how to write custom deserializers for Protobuf and CSV. For additional examples, such as
AVRO format for Event Hub Capture, visit Azure Stream Analytics on GitHub.

This is an example using protocol buffer format.

Assume the following protocol buffer definition.

Running protoc.exe from the Google.Protobuf.Tools NuGet generates a .cs file with the definition. The
generated file is not shown here.

The following code snippet is the deserializer implementation assuming the generated file is included in the
project. This implementation is just a thin wrapper over the generated file.

https://github.com/azure/azure-stream-analytics/tree/master/customdeserializers

 public class MessageBodyDeserializer : StreamDeserializer<SimulatedTemperatureSensor.MessageBodyProto>
 {
 public override IEnumerable<SimulatedTemperatureSensor.MessageBodyProto> Deserialize(Stream stream)
 {
 while (stream.Position < stream.Length)
 {
 yield return SimulatedTemperatureSensor.MessageBodyProto.Parser.ParseDelimitedFrom(stream);
 }
 }

 public override void Initialize(StreamingContext streamingContext)
 {
 }
 }

CSVCSV
The following code snippet is a simple CSV deserializer that also demonstrates propagating errors.

using System.Collections.Generic;
using System.IO;

using Microsoft.Azure.StreamAnalytics;
using Microsoft.Azure.StreamAnalytics.Serialization;

namespace ExampleCustomCode.Serialization
{
 public class CustomCsvDeserializer : StreamDeserializer<CustomEvent>
 {
 private StreamingDiagnostics streamingDiagnostics;

 public override IEnumerable<CustomEvent> Deserialize(Stream stream)
 {
 using (var sr = new StreamReader(stream))
 {
 string line = sr.ReadLine();
 while (line != null)
 {
 if (line.Length > 0 && !string.IsNullOrWhiteSpace(line))
 {
 string[] parts = line.Split(',');
 if (parts.Length != 3)
 {
 streamingDiagnostics.WriteError("Did not get expected number of columns",
$"Invalid line: {line}");
 }
 else
 {
 yield return new CustomEvent()
 {
 Column1 = parts[0],
 Column2 = parts[1],
 Column3 = parts[2]
 };
 }
 }

 line = sr.ReadLine();
 }
 }
 }

 public override void Initialize(StreamingContext streamingContext)
 {
 this.streamingDiagnostics = streamingContext.Diagnostics;
 }
 }

 public class CustomEvent
 {
 public string Column1 { get; set; }

 public string Column2 { get; set; }

 public string Column3 { get; set; }
 }
}

Serialization format for REST APIs
Every Stream Analytics input has a serialization format. For more information on input options, see the Input
REST API documentation.

https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-input

{
 "properties":{
 "type":"stream",
 "serialization":{
 "type":"CustomCLR",
 "properties":{
 "serializationDllPath":"<path to the dll inside UserCustomCode\CLR\ folder>",
 "serializationClassName":"<Full name of the deserializer class name>"
 }
 }
 }
}

Region support

Frequently asked questions
When will this feature be available in all Azure regions?When will this feature be available in all Azure regions?

Can I access MetadataPropertyValue from my inputs similar to GetMetadataPropertyValue function?Can I access MetadataPropertyValue from my inputs similar to GetMetadataPropertyValue function?

Can I share my deserializer implementation with the community so that others can benefit?Can I share my deserializer implementation with the community so that others can benefit?

Next Steps

The following Javascript code is an example of the .NET deserializer serialization format when using the REST API:

serializationClassName should be a class that implements StreamDeserializer<T> . This is described in the
following section.

This feature is available in the following regions:

West Central US
North Europe
East US
West US
East US 2
West Europe

You can request support for additional regions.

This feature is available in 6 regions. If you are interested in using this functionality in another region, you can
submit a request. Support for all Azure regions is on the roadmap.

This functionality is not supported. If you need this capability, you can vote for this request on UserVoice.

Once you have implemented your deserializer, you can help others by sharing it with the community. Submit your
code to the Azure Stream Analytics GitHub repo.

.NET custom deserializers for Azure Stream Analytics cloud jobs

https://aka.ms/ccodereqregion
https://docs.microsoft.com/azure/stream-analytics/custom-deserializer-examples#region-support
https://aka.ms/ccodereqregion
https://feedback.azure.com/forums/270577-stream-analytics/suggestions/38779801-accessing-input-metadata-properties-in-custom-dese
https://github.com/azure/azure-stream-analytics/tree/master/customdeserializers

Understand outputs from Azure Stream Analytics
28 minutes to read • Edit Online

Azure Data Lake Storage Gen 1

PROPERTY NAME DESCRIPTION

Output alias A friendly name used in queries to direct the query output to
Data Lake Store.

Subscription The subscription that contains your Azure Data Lake Storage
account.

Account name The name of the Data Lake Store account where you're
sending your output. You're presented with a drop-down list
of Data Lake Store accounts that are available in your
subscription.

This article describes the types of outputs available for an Azure Stream Analytics job. Outputs let you store and
save the results of the Stream Analytics job. By using the output data, you can do further business analytics and
data warehousing of your data.

When you design your Stream Analytics query, refer to the name of the output by using the INTO clause. You can
use a single output per job, or multiple outputs per streaming job (if you need them) by providing multiple INTO
clauses in the query.

To create, edit, and test Stream Analytics job outputs, you can use the Azure portal, Azure PowerShell, .NET API,
REST API, and Visual Studio.

Some outputs types support partitioning. Output batch sizes vary to optimize throughput.

Stream Analytics supports Azure Data Lake Storage Gen 1. Azure Data Lake Storage is an enterprise-wide,
hyperscale repository for big data analytic workloads. You can use Data Lake Storage to store data of any size,
type, and ingestion speed for operational and exploratory analytics. Stream Analytics needs to be authorized to
access Data Lake Storage.

Azure Data Lake Storage output from Stream Analytics is currently not available in the Azure China 21Vianet and
Azure Germany (T-Systems International) regions.

The following table lists property names and their descriptions to configure your Data Lake Storage Gen 1
output.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-define-outputs.md
https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics
https://docs.microsoft.com/dotnet/api/microsoft.azure.management.streamanalytics.ioutputsoperations?view=azure-dotnet
https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-output
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview

Path prefix pattern The file path that's used to write your files within the specified
Data Lake Store account. You can specify one or more
instances of the {date} and {time} variables:

The time stamp of the created folder structure follows UTC
and not local time.

If the file path pattern doesn't contain a trailing slash (/), the
last pattern in the file path is treated as a file name prefix.

New files are created in these circumstances:

Date format Optional. If the date token is used in the prefix path, you can
select the date format in which your files are organized.
Example: YYYY/MM/DD

Time format Optional. If the time token is used in the prefix path, specify
the time format in which your files are organized. Currently
the only supported value is HH.

Event serialization format The serialization format for output data. JSON, CSV, and Avro
are supported.

Encoding If you're using CSV or JSON format, an encoding must be
specified. UTF-8 is the only supported encoding format at
this time.

Delimiter Applicable only for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing CSV
data. Supported values are comma, semicolon, space, tab, and
vertical bar.

Format Applicable only for JSON serialization. Line separated
specifies that the output is formatted by having each JSON
object separated by a new line. Array specifies that the
output is formatted as an array of JSON objects. This array is
closed only when the job stops or Stream Analytics has
moved on to the next time window. In general, it's preferable
to use line-separated JSON, because it doesn't require any
special handling while the output file is still being written to.

Authentication mode You can authorize access to your Data Lake Storage account
using Managed Identity or User token. Once you grant
access, you can revoke access by changing the user account
password, deleting the Data Lake Storage output for this job,
or deleting the Stream Analytics job.

PROPERTY NAME DESCRIPTION

SQL Database

Example 1: folder1/logs/{date}/{time}
Example 2: folder1/logs/{date}

Change in output schema
External or internal restart of a job

You can use Azure SQL Database as an output for data that's relational in nature or for applications that depend
on content being hosted in a relational database. Stream Analytics jobs write to an existing table in SQL Database.

https://azure.microsoft.com/services/sql-database/

PROPERTY NAME DESCRIPTION

Output alias A friendly name used in queries to direct the query output to
this database.

Database The name of the database where you're sending your output.

Server name The SQL Database server name. For Azure SQL Database
Managed Instance, it is required to specify the port 3342. For
example, sampleserver.public.database.windows.net,3342

Username The username that has write access to the database. Stream
Analytics supports only SQL authentication.

Password The password to connect to the database.

Table The table name where the output is written. The table name
is case-sensitive. The schema of this table should exactly
match the number of fields and their types that your job
output generates.

Inherit partition scheme An option for inheriting the partitioning scheme of your
previous query step, to enable fully parallel topology with
multiple writers to the table. For more information, see Azure
Stream Analytics output to Azure SQL Database.

Max batch count The recommended upper limit on the number of records sent
with every bulk insert transaction.

Blob storage and Azure Data Lake Gen2

PROPERTY NAME DESCRIPTION

The table schema must exactly match the fields and their types in your job's output. You can also specify Azure
SQL Data Warehouse as an output via the SQL Database output option. To learn about ways to improve write
throughput, see the Stream Analytics with Azure SQL Database as output article.

You can also use Azure SQL Database Managed Instance as an output. You have to configure public endpoint in
Azure SQL Database Managed Instance and then manually configure the following settings in Azure Stream
Analytics. Azure virtual machine running SQL Server with a database attached is also supported by manually
configuring the settings below.

The following table lists the property names and their description for creating a SQL Database output.

Data Lake Storage Gen2 makes Azure Storage the foundation for building enterprise data lakes on Azure.
Designed from the start to service multiple petabytes of information while sustaining hundreds of gigabits of
throughput, Data Lake Storage Gen2 allows you to easily manage massive amounts of data.A fundamental part
of Data Lake Storage Gen2 is the addition of a hierarchical namespace to Blob storage.

Azure Blob storage offers a cost-effective and scalable solution for storing large amounts of unstructured data in
the cloud. For an introduction on Blob storage and its usage, see Upload, download, and list blobs with the Azure
portal.

The following table lists the property names and their descriptions for creating a blob or ADLS Gen2 output.

https://azure.microsoft.com/documentation/services/sql-data-warehouse/
https://docs.microsoft.com/azure/sql-database/sql-database-managed-instance
https://docs.microsoft.com/azure/sql-database/sql-database-managed-instance-public-endpoint-configure
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

Output alias A friendly name used in queries to direct the query output to
this blob storage.

Storage account The name of the storage account where you're sending your
output.

Storage account key The secret key associated with the storage account.

Storage container A logical grouping for blobs stored in the Azure Blob service.
When you upload a blob to the Blob service, you must
specify a container for that blob.

PROPERTY NAME DESCRIPTION

Path pattern Optional. The file path pattern that's used to write your blobs
within the specified container.

In the path pattern, you can choose to use one or more
instances of the date and time variables to specify the
frequency that blobs are written:
{date}, {time}

You can use custom blob partitioning to specify one custom
{field} name from your event data to partition blobs. The field
name is alphanumeric and can include spaces, hyphens, and
underscores. Restrictions on custom fields include the
following:

This feature enables the use of custom date/time format
specifier configurations in the path. Custom date and time
formats must be specified one at a time, enclosed by the
{datetime:<specifier>} keyword. Allowable inputs for
<specifier> are yyyy, MM, M, dd, d, HH, H, mm, m, ss, or s.
The {datetime:<specifier>} keyword can be used multiple
times in the path to form custom date/time configurations.

Examples:

The time stamp of the created folder structure follows UTC
and not local time.

File naming uses the following convention:

{Path Prefix
Pattern}/schemaHashcode_Guid_Number.extension

Example output files:

For more information about this feature, see Azure Stream
Analytics custom blob output partitioning.

Date format Optional. If the date token is used in the prefix path, you can
select the date format in which your files are organized.
Example: YYYY/MM/DD

PROPERTY NAME DESCRIPTION

Field names aren't case-sensitive. For example, the
service can't differentiate between column "ID" and
column "id."
Nested fields are not permitted. Instead, use an alias
in the job query to "flatten" the field.
Expressions can't be used as a field name.

Example 1: cluster1/logs/{date}/{time}
Example 2: cluster1/logs/{date}
Example 3: cluster1/{client_id}/{date}/{time}
Example 4: cluster1/{datetime:ss}/{myField} where the
query is: SELECT data.myField AS myField FROM
Input;
Example 5: cluster1/year={datetime:yyyy}/month=
{datetime:MM}/day={datetime:dd}

Myoutput/20170901/00/45434_gguid_1.csv
Myoutput/20170901/01/45434_gguid_1.csv

Time format Optional. If the time token is used in the prefix path, specify
the time format in which your files are organized. Currently
the only supported value is HH.

Event serialization format Serialization format for output data. JSON, CSV, Avro, and
Parquet are supported.

Minimum rows (Parquet only) The number of minimum rows per batch. For Parquet, every
batch will create a new file. The current default value is 2,000
rows and the allowed maximum is 10,000 rows.

Maximum time (Parquet only) The maximum wait time per batch. After this time, the batch
will be written to the output even if the minimum rows
requirement is not met. The current default value is 1 minute
and the allowed maximum is 2 hours. If your blob output has
path pattern frequency, the wait time cannot be higher than
the partition time range.

Encoding If you're using CSV or JSON format, an encoding must be
specified. UTF-8 is the only supported encoding format at
this time.

Delimiter Applicable only for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing CSV
data. Supported values are comma, semicolon, space, tab, and
vertical bar.

Format Applicable only for JSON serialization. Line separated
specifies that the output is formatted by having each JSON
object separated by a new line. Array specifies that the
output is formatted as an array of JSON objects. This array is
closed only when the job stops or Stream Analytics has
moved on to the next time window. In general, it's preferable
to use line-separated JSON, because it doesn't require any
special handling while the output file is still being written to.

PROPERTY NAME DESCRIPTION

When you're using Blob storage as output, a new file is created in the blob in the following cases:

If the file exceeds the maximum number of allowed blocks (currently 50,000). You might reach the maximum
allowed number of blocks without reaching the maximum allowed blob size. For example, if the output rate is
high, you can see more bytes per block, and the file size is larger. If the output rate is low, each block has less
data, and the file size is smaller.
If there's a schema change in the output, and the output format requires fixed schema (CSV and Avro).
If a job is restarted, either externally by a user stopping it and starting it, or internally for system maintenance
or error recovery.
If the query is fully partitioned, and a new file is created for each output partition.
If the user deletes a file or a container of the storage account.
If the output is time partitioned by using the path prefix pattern, and a new blob is used when the query
moves to the next hour.
If the output is partitioned by a custom field, and a new blob is created per partition key if it does not exist.
If the output is partitioned by a custom field where the partition key cardinality exceeds 8,000, and a new blob
is created per partition key.

Event Hubs

PROPERTY NAME DESCRIPTION

Output alias A friendly name used in queries to direct the query output to
this event hub.

Event hub namespace A container for a set of messaging entities. When you created
a new event hub, you also created an event hub namespace.

Event hub name The name of your event hub output.

Event hub policy name The shared access policy, which you can create on the event
hub's Configure tab. Each shared access policy has a name,
permissions that you set, and access keys.

Event hub policy key The shared access key that's used to authenticate access to
the event hub namespace.

Partition key column Optional. A column that contains the partition key for event
hub output.

Event serialization format The serialization format for output data. JSON, CSV, and Avro
are supported.

Encoding For CSV and JSON, UTF-8 is the only supported encoding
format at this time.

Delimiter Applicable only for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing data
in CSV format. Supported values are comma, semicolon,
space, tab, and vertical bar.

Format Applicable only for JSON serialization. Line separated
specifies that the output is formatted by having each JSON
object separated by a new line. Array specifies that the
output is formatted as an array of JSON objects.

Property columns Optional. Comma-separated columns that need to be
attached as user properties of the outgoing message instead
of the payload. More information about this feature is in the
section Custom metadata properties for output.

Power BI

The Azure Event Hubs service is a highly scalable publish-subscribe event ingestor. It can collect millions of
events per second. One use of an event hub as output is when the output of a Stream Analytics job becomes the
input of another streaming job. For information about the maximum message size and batch size optimization,
see the output batch size section.

You need a few parameters to configure data streams from event hubs as an output.

You can use Power BI as an output for a Stream Analytics job to provide for a rich visualization experience of
analysis results. You can use this capability for operational dashboards, report generation, and metric-driven
reporting.

Power BI output from Stream Analytics is currently not available in the Azure China 21Vianet and Azure

https://azure.microsoft.com/services/event-hubs/
https://powerbi.microsoft.com/

PROPERTY NAME DESCRIPTION

Output alias Provide a friendly name that's used in queries to direct the
query output to this Power BI output.

Group workspace To enable sharing data with other Power BI users, you can
select groups inside your Power BI account or choose My
Workspace if you don't want to write to a group. Updating
an existing group requires renewing the Power BI
authentication.

Dataset name Provide a dataset name that you want the Power BI output
to use.

Table name Provide a table name under the dataset of the Power BI
output. Currently, Power BI output from Stream Analytics
jobs can have only one table in a dataset.

Authorize connection You need to authorize with Power BI to configure your
output settings. Once you grant this output access to your
Power BI dashboard, you can revoke access by changing the
user account password, deleting the job output, or deleting
the Stream Analytics job.

NOTENOTE

Create a schemaCreate a schema

Convert a data type from Stream Analytics to Power BIConvert a data type from Stream Analytics to Power BI

FROM STREAM ANALYTICS TO POWER BI

bigint Int64

nvarchar(max) String

Germany (T-Systems International) regions.

The following table lists property names and their descriptions to configure your Power BI output.

For a walkthrough of configuring a Power BI output and dashboard, see the Azure Stream Analytics and Power BI
tutorial.

Don't explicitly create the dataset and table in the Power BI dashboard. The dataset and table are automatically populated
when the job is started and the job starts pumping output into Power BI. If the job query doesn’t generate any results, the
dataset and table aren't created. If Power BI already had a dataset and table with the same name as the one provided in this
Stream Analytics job, the existing data is overwritten.

Azure Stream Analytics creates a Power BI dataset and table schema for the user if they don't already exist. In all
other cases, the table is updated with new values. Currently, only one table can exist within a dataset.

Power BI uses the first-in, first-out (FIFO) retention policy. Data will collect in a table until it hits 200,000 rows.

Azure Stream Analytics updates the data model dynamically at runtime if the output schema changes. Column
name changes, column type changes, and the addition or removal of columns are all tracked.

This table covers the data type conversions from Stream Analytics data types to Power BI Entity Data Model
(EDM) types, if a Power BI dataset and table don't exist.

https://docs.microsoft.com/stream-analytics-query/data-types-azure-stream-analytics
https://docs.microsoft.com/dotnet/framework/data/adonet/entity-data-model

datetime Datetime

float Double

Record array String type, constant value "IRecord" or "IArray"

FROM STREAM ANALYTICS TO POWER BI

Update the schemaUpdate the schema

PREVIOUS/CURRENT INT64 STRING DATETIME DOUBLE

Int64 Int64 String String Double

Double Double String String Double

String String String String String

Datetime String String Datetime String

Table storage

PROPERTY NAME DESCRIPTION

Output alias A friendly name used in queries to direct the query output to
this table storage.

Storage account The name of the storage account where you're sending your
output.

Storage account key The access key associated with the storage account.

Table name The name of the table. The table gets created if it doesn't
exist.

Partition key The name of the output column that contains the partition
key. The partition key is a unique identifier for the partition
within a table that forms the first part of an entity's primary
key. It's a string value that can be up to 1 KB in size.

Stream Analytics infers the data model schema based on the first set of events in the output. Later, if necessary,
the data model schema is updated to accommodate incoming events that might not fit into the original schema.

Avoid the SELECT * query to prevent dynamic schema update across rows. In addition to potential performance
implications, it might result in uncertainty of the time taken for the results. Select the exact fields that need to be
shown on the Power BI dashboard. Additionally, the data values should be compliant with the chosen data type.

Azure Table storage offers highly available, massively scalable storage, so that an application can automatically
scale to meet user demand. Table storage is Microsoft’s NoSQL key/attribute store, which you can use for
structured data with fewer constraints on the schema. Azure Table storage can be used to store data for
persistence and efficient retrieval.

The following table lists the property names and their descriptions for creating a table output.

https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction

Row key The name of the output column that contains the row key.
The row key is a unique identifier for an entity within a
partition. It forms the second part of an entity’s primary key.
The row key is a string value that can be up to 1 KB in size.

Batch size The number of records for a batch operation. The default
(100) is sufficient for most jobs. See the Table Batch
Operation spec for more details on modifying this setting.

PROPERTY NAME DESCRIPTION

Service Bus queues

PROPERTY NAME DESCRIPTION

Output alias A friendly name used in queries to direct the query output to
this Service Bus queue.

Service Bus namespace A container for a set of messaging entities.

Queue name The name of the Service Bus queue.

Queue policy name When you create a queue, you can also create shared access
policies on the queue's Configure tab. Each shared access
policy has a name, permissions that you set, and access keys.

Queue policy key The shared access key that's used to authenticate access to
the Service Bus namespace.

Event serialization format The serialization format for output data. JSON, CSV, and Avro
are supported.

Encoding For CSV and JSON, UTF-8 is the only supported encoding
format at this time.

Delimiter Applicable only for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing data
in CSV format. Supported values are comma, semicolon,
space, tab, and vertical bar.

Format Applicable only for JSON type. Line separated specifies that
the output is formatted by having each JSON object
separated by a new line. Array specifies that the output is
formatted as an array of JSON objects.

Service Bus queues offer a FIFO message delivery to one or more competing consumers. Typically, messages are
received and processed by the receivers in the temporal order in which they were added to the queue. Each
message is received and processed by only one message consumer.

In compatibility level 1.2, Azure Stream Analytics uses Advanced Message Queueing Protocol (AMQP)
messaging protocol to write to Service Bus Queues and Topics. AMQP enables you to build cross-platform,
hybrid applications using an open standard protocol.

The following table lists the property names and their descriptions for creating a queue output.

https://docs.microsoft.com/java/api/com.microsoft.azure.storage.table._table_batch_operation
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-amqp-overview

Property columns Optional. Comma-separated columns that need to be
attached as user properties of the outgoing message instead
of the payload. More information about this feature is in the
section Custom metadata properties for output.

System Property columns Optional. Key value pairs of System Properties and
corresponding column names that need to be attached to the
outgoing message instead of the payload. More information
about this feature is in the section System properties for
Service Bus Queue and Topic outputs

PROPERTY NAME DESCRIPTION

Service Bus Topics

PROPERTY NAME DESCRIPTION

Output alias A friendly name used in queries to direct the query output to
this Service Bus topic.

Service Bus namespace A container for a set of messaging entities. When you created
a new event hub, you also created a Service Bus namespace.

Topic name Topics are messaging entities, similar to event hubs and
queues. They're designed to collect event streams from
devices and services. When a topic is created, it's also given a
specific name. The messages sent to a topic aren't available
unless a subscription is created, so ensure there's one or more
subscriptions under the topic.

Topic policy name When you create a Service Bus topic, you can also create
shared access policies on the topic's Configure tab. Each
shared access policy has a name, permissions that you set,
and access keys.

Topic policy key The shared access key that's used to authenticate access to
the Service Bus namespace.

Event serialization format The serialization format for output data. JSON, CSV, and Avro
are supported.

Encoding If you're using CSV or JSON format, an encoding must be
specified. UTF-8 is the only supported encoding format at
this time.

Delimiter Applicable only for CSV serialization. Stream Analytics
supports a number of common delimiters for serializing data
in CSV format. Supported values are comma, semicolon,
space, tab, and vertical bar.

The number of partitions is based on the Service Bus SKU and size. Partition key is a unique integer value for
each partition.

Service Bus queues provide a one-to-one communication method from sender to receiver. Service Bus topics
provide a one-to-many form of communication.

The following table lists the property names and their descriptions for creating a Service Bus topic output.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://msdn.microsoft.com/library/azure/hh367516.aspx

Property columns Optional. Comma-separated columns that need to be
attached as user properties of the outgoing message instead
of the payload. More information about this feature is in the
section Custom metadata properties for output.

System Property columns Optional. Key value pairs of System Properties and
corresponding column names that need to be attached to the
outgoing message instead of the payload. More information
about this feature is in the section System properties for
Service Bus Queue and Topic outputs

PROPERTY NAME DESCRIPTION

Azure Cosmos DB

NOTENOTE

PROPERTY NAME DESCRIPTION

Output alias An alias to refer this output in your Stream Analytics query.

Sink Azure Cosmos DB.

Import option Choose either Select Cosmos DB from your subscription
or Provide Cosmos DB settings manually.

Account ID The name or endpoint URI of the Azure Cosmos DB account.

Account key The shared access key for the Azure Cosmos DB account.

Database The Azure Cosmos DB database name.

Container name The container name to be used, which must exist in Cosmos
DB. Example:

The number of partitions is based on the Service Bus SKU and size. The partition key is a unique integer value for
each partition.

Azure Cosmos DB is a globally distributed database service that offers limitless elastic scale around the globe,
rich query, and automatic indexing over schema-agnostic data models. To learn about Azure Cosmos DB
container options for Stream Analytics, see the Stream Analytics with Azure Cosmos DB as output article.

Azure Cosmos DB output from Stream Analytics is currently not available in the Azure China 21Vianet and Azure
Germany (T-Systems International) regions.

At this time, Azure Stream Analytics only supports connection to Azure Cosmos DB by using the SQL API. Other Azure
Cosmos DB APIs are not yet supported. If you point Azure Stream Analytics to the Azure Cosmos DB accounts created with
other APIs, the data might not be properly stored.

The following table describes the properties for creating an Azure Cosmos DB output.

MyContainer: A container named "MyContainer" must
exist.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://azure.microsoft.com/services/documentdb/

Document ID Optional. The name of the field in output events that's used
to specify the primary key on which insert or update
operations are based.

PROPERTY NAME DESCRIPTION

Azure Functions

PROPERTY NAME DESCRIPTION

Function app The name of your Azure Functions app.

Function The name of the function in your Azure Functions app.

Key If you want to use an Azure Function from another
subscription, you can do so by providing the key to access
your function.

Max batch size A property that lets you set the maximum size for each
output batch that's sent to your Azure function. The input
unit is in bytes. By default, this value is 262,144 bytes (256
KB).

Max batch count A property that lets you specify the maximum number of
events in each batch that's sent to Azure Functions. The
default value is 100.

NOTENOTE

Azure Functions is a serverless compute service that you can use to run code on-demand without having to
explicitly provision or manage infrastructure. It lets you implement code that's triggered by events occurring in
Azure or partner services. This ability of Azure Functions to respond to triggers makes it a natural output for
Azure Stream Analytics. This output adapter enables users to connect Stream Analytics to Azure Functions, and
run a script or piece of code in response to a variety of events.

Azure Functions output from Stream Analytics is currently not available in the Azure China 21Vianet and Azure
Germany (T-Systems International) regions.

Azure Stream Analytics invokes Azure Functions via HTTP triggers. The Azure Functions output adapter is
available with the following configurable properties:

Azure Stream Analytics expects HTTP status 200 from the Functions app for batches that were processed
successfully.

When Azure Stream Analytics receives a 413 ("http Request Entity Too Large") exception from an Azure function,
it reduces the size of the batches that it sends to Azure Functions. In your Azure function code, use this exception
to make sure that Azure Stream Analytics doesn’t send oversized batches. Also, make sure that the maximum
batch count and size values used in the function are consistent with the values entered in the Stream Analytics
portal.

During test connection, Stream Analytics sends an empty batch to Azure Functions to test if the connection between the
two works. Make sure that your Functions app handles empty batch requests to make sure test connection passes.

Also, in a situation where there's no event landing in a time window, no output is generated. As a result, the
computeResult function isn't called. This behavior is consistent with the built-in windowed aggregate functions.

Custom metadata properties for output

System properties for Service Bus Queue and Topic outputs

You can attach query columns as user properties to your outgoing messages. These columns don't go into the
payload. The properties are present in the form of a dictionary on the output message. Key is the column name
and value is the column value in the properties dictionary. All Stream Analytics data types are supported except
Record and Array.

Supported outputs:

Service Bus queue
Service Bus topic
Event hub

In the following example, we add the two fields DeviceId and DeviceStatus to the metadata.

Query: select *, DeviceId, DeviceStatus from iotHubInput

Output configuration: DeviceId,DeviceStatus

The following screenshot shows output message properties inspected in EventHub through Service Bus Explorer.

You can attach query columns as system properties to your outgoing service bus Queue or Topic messages.
These columns don't go into the payload instead the corresponding BrokeredMessage system property is
populated with the query column values. These system properties are supported -
MessageId, ContentType, Label, PartitionKey, ReplyTo, SessionId, CorrelationId, To, ForcePersistence,
TimeToLive, ScheduledEnqueueTimeUtc

. String values of these columns are parsed as corresponding system property value type and any parsing failures
are treated as data errors. This field is provided as a JSON object format. Details about this format are as follows
-

Surrounded by curly braces {}.
Written in key/value pairs.
Keys and values must be strings.
Key is the system property name and value is the query column name.
Keys and values are separated by a colon.
Each key/value pair is separated by a comma.

This shows how to use this property –

Query: select *, column1, column2 INTO queueOutput FROM iotHubInput

System Property Columns: { "MessageId": "column1", "PartitionKey": "column2"}

This sets the MessageId on service bus queue messages with column1 's values and PartitionKey is set with
column2 's values.

https://github.com/paolosalvatori/servicebusexplorer
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.brokeredmessage?view=azure-dotnet#properties
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.brokeredmessage?view=azure-dotnet#properties

 Partitioning

OUTPUT TYPE PARTITIONING SUPPORT PARTITION KEY NUMBER OF OUTPUT WRITERS

Azure Data Lake Store Yes Use {date} and {time} tokens
in the path prefix pattern.
Choose the date format,
such as YYYY/MM/DD,
DD/MM/YYYY, or MM-DD-
YYYY. HH is used for the
time format.

Follows the input
partitioning for fully
parallelizable queries.

Azure SQL Database Yes, needs to enabled. Based on the PARTITION BY
clause in the query.

When Inherit Partitioning
option is enabled, follows
the input partitioning for
fully parallelizable queries. To
learn more about achieving
better write throughput
performance when you're
loading data into Azure SQL
Database, see Azure Stream
Analytics output to Azure
SQL Database.

Azure Blob storage Yes Use {date} and {time} tokens
from your event fields in the
path pattern. Choose the
date format, such as
YYYY/MM/DD,
DD/MM/YYYY, or MM-DD-
YYYY. HH is used for the
time format. Blob output
can be partitioned by a
single custom event
attribute {fieldname} or
{datetime:<specifier>}.

Follows the input
partitioning for fully
parallelizable queries.

The following table summarizes the partition support and the number of output writers for each output type:

Azure Event Hubs Yes Yes Varies depending on
partition alignment.
When the partition key for
event hub output is equally
aligned with the upstream
(previous) query step, the
number of writers is the
same as the number of
partitions in event hub
output. Each writer uses the
EventHubSender class to
send events to the specific
partition.
When the partition key for
event hub output is not
aligned with the upstream
(previous) query step, the
number of writers is the
same as the number of
partitions in that prior step.
Each writer uses the
SendBatchAsync class in
EventHubClient to send
events to all the output
partitions.

Power BI No None Not applicable.

Azure Table storage Yes Any output column. Follows the input
partitioning for fully
parallelized queries.

Azure Service Bus topic Yes Automatically chosen. The
number of partitions is
based on the Service Bus
SKU and size. The partition
key is a unique integer value
for each partition.

Same as the number of
partitions in the output
topic.

Azure Service Bus queue Yes Automatically chosen. The
number of partitions is
based on the Service Bus
SKU and size. The partition
key is a unique integer value
for each partition.

Same as the number of
partitions in the output
queue.

Azure Cosmos DB Yes Based on the PARTITION BY
clause in the query.

Follows the input
partitioning for fully
parallelized queries.

Azure Functions Yes Based on the PARTITION BY
clause in the query.

Follows the input
partitioning for fully
parallelized queries.

OUTPUT TYPE PARTITIONING SUPPORT PARTITION KEY NUMBER OF OUTPUT WRITERS

The number of output writers can also be controlled using INTO <partition count> (see INTO) clause in your
query, which can be helpful in achieving a desired job topology. If your output adapter is not partitioned, lack of
data in one input partition will cause a delay up to the late arrival amount of time. In such cases, the output is
merged to a single writer, which might cause bottlenecks in your pipeline. To learn more about late arrival policy,

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.eventhubsender?view=azure-dotnet
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.eventhubclient.sendasync?view=azure-dotnet
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics#into-shard-count

 Output batch size

OUTPUT TYPE MAX MESSAGE SIZE BATCH SIZE OPTIMIZATION

Azure Data Lake Store See Data Lake Storage limits. Use up to 4 MB per write operation.

Azure SQL Database Configurable using Max batch count.
10,000 maximum and 100 minimum
rows per single bulk insert by default.
See Azure SQL limits.

Every batch is initially bulk inserted
with maximum batch count. Batch is
split in half (until minimum batch
count) based on retryable errors from
SQL.

Azure Blob storage See Azure Storage limits. The maximum blob block size is 4 MB.
The maximum blob bock count is
50,000.

Azure Event Hubs 256 KB or 1 MB per message.
See Event Hubs limits.

When input/output partitioning isn't
aligned, each event is packed
individually in EventData and sent in
a batch of up to the maximum message
size. This also happens if custom
metadata properties are used.

When input/output partitioning is
aligned, multiple events are packed into
a single EventData instance, up to the
maximum message size, and sent.

Power BI See Power BI Rest API limits.

Azure Table storage See Azure Storage limits. The default is 100 entities per single
transaction. You can configure it to a
smaller value as needed.

Azure Service Bus queue 256 KB per message for Standard tier,
1MB for Premium tier.
See Service Bus limits.

Use a single event per message.

Azure Service Bus topic 256 KB per message for Standard tier,
1MB for Premium tier.
See Service Bus limits.

Use a single event per message.

Azure Cosmos DB See Azure Cosmos DB limits. Batch size and write frequency are
adjusted dynamically based on Azure
Cosmos DB responses.
There are no predetermined limitations
from Stream Analytics.

see Azure Stream Analytics event order considerations.

Azure Stream Analytics uses variable-size batches to process events and write to outputs. Typically the Stream
Analytics engine doesn't write one message at a time, and uses batches for efficiency. When the rate of both the
incoming and outgoing events is high, Stream Analytics uses larger batches. When the egress rate is low, it uses
smaller batches to keep latency low.

The following table explains some of the considerations for output batching:

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-quotas
https://msdn.microsoft.com/library/dn950053.aspx
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-quotas
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-quotas
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits

Azure Functions The default batch size is 262,144 bytes
(256 KB).
The default event count per batch is
100.
The batch size is configurable and can
be increased or decreased in the
Stream Analytics output options.

OUTPUT TYPE MAX MESSAGE SIZE BATCH SIZE OPTIMIZATION

Next steps
Quickstart: Create a Stream Analytics job by using the Azure portal

Azure Stream Analytics output to Azure Cosmos DB
7 minutes to read • Edit Online

NOTENOTE

Basics of Azure Cosmos DB as an output target

NOTENOTE

Tuning consistency, availability, and latency

Upserts from Stream Analytics

Azure Stream Analytics can target Azure Cosmos DB for JSON output, enabling data archiving and low-latency
queries on unstructured JSON data. This document covers some best practices for implementing this
configuration.

If you're unfamiliar with Azure Cosmos DB, see the Azure Cosmos DB documentation to get started.

At this time, Stream Analytics supports connection to Azure Cosmos DB only through the SQL API. Other Azure Cosmos DB
APIs are not yet supported. If you point Stream Analytics to Azure Cosmos DB accounts created with other APIs, the data
might not be properly stored.

The Azure Cosmos DB output in Stream Analytics enables writing your stream processing results as JSON output
into your Azure Cosmos DB containers.

Stream Analytics doesn't create containers in your database. Instead, it requires you to create them up front. You
can then control the billing costs of Azure Cosmos DB containers. You can also tune the performance, consistency,
and capacity of your containers directly by using the Azure Cosmos DB APIs.

You must add 0.0.0.0 to the list of allowed IPs from your Azure Cosmos DB firewall.

The following sections detail some of the container options for Azure Cosmos DB.

To match your application requirements, Azure Cosmos DB allows you to fine-tune the database and containers
and make trade-offs between consistency, availability, latency, and throughput.

Depending on what levels of read consistency your scenario needs against read and write latency, you can choose
a consistency level on your database account. You can improve throughput by scaling up Request Units (RUs) on
the container.

Also by default, Azure Cosmos DB enables synchronous indexing on each CRUD operation to your container. This
is another useful option to control write/read performance in Azure Cosmos DB.

For more information, review the Change your database and query consistency levels article.

Stream Analytics integration with Azure Cosmos DB allows you to insert or update records in your container
based on a given Document ID column. This is also called an upsert.

Stream Analytics uses an optimistic upsert approach. Updates happen only when an insert fails with a document
ID conflict.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-documentdb-output.md
https://azure.microsoft.com/services/documentdb/
https://docs.microsoft.com/azure/cosmos-db/
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Data partitioning in Azure Cosmos DB

NOTENOTE

Improved throughput with compatibility level 1.2

With compatibility level 1.0, Stream Analytics performs this update as a PATCH operation, so it enables partial
updates to the document. Stream Analytics adds new properties or replaces an existing property incrementally.
However, changes in the values of array properties in your JSON document result in overwriting the entire array.
That is, the array isn't merged.

With 1.2, upsert behavior is modified to insert or replace the document. The later section about compatibility level
1.2 further describes this behavior.

If the incoming JSON document has an existing ID field, that field is automatically used as the Document ID
column in Azure Cosmos DB. Any subsequent writes are handled as such, leading to one of these situations:

Unique IDs lead to insert.
Duplicate IDs and Document ID set to ID lead to upsert.
Duplicate IDs and Document ID not set lead to error, after the first document.

If you want to save all documents, including the ones that have a duplicate ID, rename the ID field in your query
(by using the AS keyword). Let Azure Cosmos DB create the ID field or replace the ID with another column's value
(by using the AS keyword or by using the Document ID setting).

Azure Cosmos DB automatically scales partitions based on your workload. So we recommend unlimited
containers as the approach for partitioning your data. When Stream Analytics writes to unlimited containers, it
uses as many parallel writers as the previous query step or input partitioning scheme.

Azure Stream Analytics supports only unlimited containers with partition keys at the top level. For example, /region is
supported. Nested partition keys (for example, /region/name) are not supported.

Depending on your choice of partition key, you might receive this warning:

CosmosDB Output contains multiple rows and just one row per partition key. If the output latency is higher than
expected, consider choosing a partition key that contains at least several hundred records per partition key.

It's important to choose a partition key property that has a number of distinct values, and that lets you distribute
your workload evenly across these values. As a natural artifact of partitioning, requests that involve the same
partition key are limited by the maximum throughput of a single partition.

The storage size for documents that belong to the same partition key is limited to 10 GB. An ideal partition key is
one that appears frequently as a filter in your queries and has sufficient cardinality to ensure that your solution is
scalable.

A partition key is also the boundary for transactions in stored procedures and triggers for Azure Cosmos DB. You
should choose the partition key so that documents that occur together in transactions share the same partition key
value. The article Partitioning in Azure Cosmos DB gives more details on choosing a partition key.

For fixed Azure Cosmos DB containers, Stream Analytics allows no way to scale up or out after they're full. They
have an upper limit of 10 GB and 10,000 RU/s of throughput. To migrate the data from a fixed container to an
unlimited container (for example, one with at least 1,000 RU/s and a partition key), use the data migration tool or
the change feed library.

The ability to write to multiple fixed containers is being deprecated. We don't recommend it for scaling out your
Stream Analytics job.

https://docs.microsoft.com/en-us/azure/cosmos-db/partition-data
https://docs.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://docs.microsoft.com/en-us/azure/cosmos-db/import-data
https://docs.microsoft.com/en-us/azure/cosmos-db/change-feed

With compatibility level 1.2, Stream Analytics supports native integration to bulk write into Azure Cosmos DB.
This integration enables writing effectively to Azure Cosmos DB while maximizing throughput and efficiently
handling throttling requests.

The improved writing mechanism is available under a new compatibility level because of a difference in upsert
behavior. With levels before 1.2, the upsert behavior is to insert or merge the document. With 1.2, upsert behavior
is modified to insert or replace the document.

With levels before 1.2, Stream Analytics uses a custom stored procedure to bulk upsert documents per partition
key into Azure Cosmos DB. There, a batch is written as a transaction. Even when a single record hits a transient
error (throttling), the whole batch has to be retried. This makes scenarios with even reasonable throttling relatively
slow.

The following example shows two identical Stream Analytics jobs reading from the same Azure Event Hubs input.
Both Stream Analytics jobs are fully partitioned with a passthrough query and write to identical Azure Cosmos DB
containers. Metrics on the left are from the job configured with compatibility level 1.0. Metrics on the right are
configured with 1.2. An Azure Cosmos DB container's partition key is a unique GUID that comes from the input
event.

The incoming event rate in Event Hubs is two times higher than Azure Cosmos DB containers (20,000 RUs) are
configured to take in, so throttling is expected in Azure Cosmos DB. However, the job with 1.2 is consistently
writing at a higher throughput (output events per minute) and with a lower average SU% utilization. In your
environment, this difference will depend on few more factors. These factors include choice of event format, input
event/message size, partition keys, and query.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization#embarrassingly-parallel-jobs

Azure Cosmos DB settings for JSON output

FIELD DESCRIPTION

Output alias An alias to refer to this output in your Stream Analytics query.

With 1.2, Stream Analytics is more intelligent in utilizing 100 percent of the available throughput in Azure Cosmos
DB with very few resubmissions from throttling or rate limiting. This provides a better experience for other
workloads like queries running on the container at the same time. If you want to see how Stream Analytics scales
out with Azure Cosmos DB as a sink for 1,000 to 10,000 messages per second, try this Azure sample project.

Throughput of Azure Cosmos DB output is identical with 1.0 and 1.1. We strongly recommend that you use
compatibility level 1.2 in Stream Analytics with Azure Cosmos DB.

Using Azure Cosmos DB as an output in Stream Analytics generates the following prompt for information.

https://github.com/azure-samples/streaming-at-scale/tree/master/eventhubs-streamanalytics-cosmosdb

Subscription The Azure subscription.

Account ID The name or endpoint URI of the Azure Cosmos DB account.

Account key The shared access key for the Azure Cosmos DB account.

Database The Azure Cosmos DB database name.

Container name The container name, such as MyContainer . One container
named MyContainer must exist.

Document ID Optional. The column name in output events used as the
unique key on which insert or update operations must be
based. If you leave it empty, all events will be inserted, with no
update option.

FIELD DESCRIPTION

 SELECT TollBoothId, PartitionId
 INTO CosmosDBOutput
 FROM Input1 PARTITION BY PartitionId

Error handling and retries

After you configure the Azure Cosmos DB output, you can use it in the query as the target of an INTO statement.
When you're using an Azure Cosmos DB output that way, a partition key needs to be set explicitly.

The output record must contain a case-sensitive column named after the partition key in Azure Cosmos DB. To
achieve greater parallelization, the statement might require a PARTITION BY clause that uses the same column.

Here's a sample query:

If a transient failure, service unavailability, or throttling happens while Stream Analytics is sending events to Azure
Cosmos DB, Stream Analytics retries indefinitely to finish the operation successfully. But it doesn't attempt retries
for the following failures:

Unauthorized (HTTP error code 401)
NotFound (HTTP error code 404)
Forbidden (HTTP error code 403)
BadRequest (HTTP error code 400)

https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization#partitions-in-sources-and-sinks
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization#embarrassingly-parallel-jobs

Azure Stream Analytics output to Azure SQL
Database
4 minutes to read • Edit Online

Azure Stream Analytics

NOTENOTE

SQL Azure

This article discusses tips to achieve better write throughput performance when you're loading data into SQL
Azure Database using Azure Stream Analytics.

SQL output in Azure Stream Analytics supports writing in parallel as an option. This option allows for fully
parallel job topologies, where multiple output partitions are writing to the destination table in parallel. Enabling
this option in Azure Stream Analytics however may not be sufficient to achieve higher throughputs, as it depends
significantly on your SQL Azure database configuration and table schema. The choice of indexes, clustering key,
index fill factor, and compression have an impact on the time to load tables. For more information about how to
optimize your SQL Azure database to improve query and load performance based on internal benchmarks, see
SQL database performance guidance. Ordering of writes is not guaranteed when writing in parallel to SQL Azure
Database.

Here are some configurations within each service that can help improve overall throughput of your solution.

Inherit Partitioning – This SQL output configuration option enables inheriting the partitioning scheme of
your previous query step or input. With this enabled, writing to a disk-based table and having a fully parallel
topology for your job, expect to see better throughputs. This partitioning already automatically happens for
many other outputs. Table locking (TABLOCK) is also disabled for bulk inserts made with this option.

When there are more than 8 input partitions, inheriting the input partitioning scheme might not be an appropriate choice.
This upper limit was observed on a table with a single identity column and a clustered index. In this case, consider using
INTO 8 in your query, to explicitly specify the number of output writers. Based on your schema and choice of indexes, your
observations may vary.

Batch Size - SQL output configuration allows you to specify the maximum batch size in an Azure Stream
Analytics SQL output based on the nature of your destination table/workload. Batch size is the maximum
number of records that sent with every bulk insert transaction. In clustered columnstore indexes, batch
sizes around 100K allow for more parallelization, minimal logging, and locking optimizations. In disk-based
tables, 10K (default) or lower may be optimal for your solution, as higher batch sizes may trigger lock
escalation during bulk inserts.

Input Message Tuning – If you've optimized using inherit partitioning and batch size, increasing the
number of input events per message per partition helps further pushing up your write throughput. Input
message tuning allows batch sizes within Azure Stream Analytics to be up to the specified Batch Size,
thereby improving throughput. This can be achieved by using compression or increasing input message
sizes in EventHub or Blob.

Partitioned Table and Indexes – Using a partitioned SQL table and partitioned indexes on the table with
the same column as your partition key (for example, PartitionId) can significantly reduce contentions

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-sql-output-perf.md
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-performance-guidance
https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics#into-shard-count
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-data-loading-guidance
https://docs.microsoft.com/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-2017

Azure Data Factory and In-Memory Tables

Avoiding Performance Pitfalls

Summary

among partitions during writes. For a partitioned table, you'll need to create a partition function and a
partition scheme on the PRIMARY filegroup. This will also increase availability of existing data while new
data is being loaded. Log IO limit may be hit based on number of partitions, which can be increased by
upgrading the SKU.

Avoid unique key violations – If you get multiple key violation warning messages in the Azure Stream
Analytics Activity Log, ensure your job isn't impacted by unique constraint violations which are likely to
happen during recovery cases. This can be avoided by setting the IGNORE_DUP_KEY option on your
indexes.

In-Memory Table as temp table – In-Memory tables allow for very high-speed data loads but data needs to
fit in memory. Benchmarks show bulk loading from an in-memory table to a disk-based table is about 10
times faster than directly bulk inserting using a single writer into the disk-based table with an identity column
and a clustered index. To leverage this bulk insert performance, set up a copy job using Azure Data Factory that
copies data from the in-memory table to the disk-based table.

Bulk inserting data is much faster than loading data with single inserts because the repeated overhead of
transferring the data, parsing the insert statement, running the statement, and issuing a transaction record is
avoided. Instead, a more efficient path is used into the storage engine to stream the data. The setup cost of this
path is however much higher than a single insert statement in a disk-based table. The break-even point is typically
around 100 rows, beyond which bulk loading is almost always more efficient.

If the incoming events rate is low, it can easily create batch sizes lower than 100 rows, which makes bulk insert
inefficient and uses too much disk space. To work around this limitation, you can do one of these actions:

Create an INSTEAD OF trigger to use simple insert for every row.
Use an In-Memory temp table as described in the previous section.

Another such scenario occurs when writing into a non-clustered columnstore index (NCCI), where smaller bulk
inserts can create too many segments, that can crash the index. In this case, the recommendation is to use a
Clustered Columnstore index instead.

In summary, with the partitioned output feature in Azure Stream Analytics for SQL output, aligned parallelization
of your job with a partitioned table in SQL Azure should give you significant throughput improvements.
Leveraging Azure Data Factory for orchestrating data movement from an In-Memory table into Disk-based tables
can give order of magnitude throughput gains. If feasible, improving message density can also be a major factor
in improving overall throughput.

https://docs.microsoft.com/sql/t-sql/statements/create-partition-function-transact-sql?view=sql-server-2017
https://docs.microsoft.com/sql/t-sql/statements/create-partition-scheme-transact-sql?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/in-memory-oltp-in-memory-optimization
https://docs.microsoft.com/en-us/azure/data-factory/connector-azure-sql-database
https://docs.microsoft.com/sql/t-sql/statements/create-trigger-transact-sql

Azure Stream Analytics custom blob output
partitioning
4 minutes to read • Edit Online

Custom field or attributes

Partition key optionsPartition key options

ExampleExample

Azure Stream Analytics supports custom blob output partitioning with custom fields or attributes and custom
DateTime path patterns.

Custom field or input attributes improve downstream data-processing and reporting workflows by allowing more
control over the output.

The partition key, or column name, used to partition input data may contain alphanumeric characters with
hyphens, underscores, and spaces. It is not possible to use nested fields as a partition key unless used in
conjunction with aliases. The partition key must be NVARCHAR(MAX).

Suppose a job takes input data from live user sessions connected to an external video game service where
ingested data contains a column client_id to identify the sessions. To partition the data by client_id, set the Blob
Path Pattern field to include a partition token {client_id} in blob output properties when creating a job. As data
with various client_id values flow through the Stream Analytics job, the output data is saved into separate folders
based on a single client_id value per folder.

Similarly, if the job input was sensor data from millions of sensors where each sensor had a sensor_id, the Path
Pattern would be {sensor_id} to partition each sensor data to different folders.

Using the REST API, the output section of a JSON file used for that request may look like the following:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-custom-path-patterns-blob-storage-output.md

Once the job starts running, the clients container may look like the following:

Each folder may contain multiple blobs where each blob contains one or more records. In the above example,
there is a single blob in a folder labelled "06000000" with the following contents:

LimitationsLimitations

Custom DateTime path patterns

Notice that each record in the blob has a client_id column matching the folder name since the column used to
partition the output in the output path was client_id.

1. Only one custom partition key is permitted in the Path Pattern blob output property. All of the following
Path Patterns are valid:

cluster1/{date}/{aFieldInMyData}
cluster1/{time}/{aFieldInMyData}
cluster1/{aFieldInMyData}
cluster1/{date}/{time}/{aFieldInMyData}

2. Partition keys are case insensitive, so partition keys like "John" and "john" are equivalent. Also, expressions
cannot be used as partition keys. For example, {columnA + columnB} does not work.

3. When an input stream consists of records with a partition key cardinality under 8000, the records will be
appended to existing blobs and only create new blobs when necessary. If the cardinality is over 8000 there
is no guarantee existing blobs will be written to and new blobs won't be created for an arbitrary number of
records with the same partition key.

Custom DateTime path patterns allow you to specify an output format that aligns with Hive Streaming
conventions, giving Azure Stream Analytics the ability to send data to Azure HDInsight and Azure Databricks for

Supported tokensSupported tokens

FORMAT SPECIFIER DESCRIPTION
RESULTS ON EXAMPLE TIME 2018-01-
02T10:06:08

{datetime:yyyy} The year as a four-digit number 2018

{datetime:MM} Month from 01 to 12 01

{datetime:M} Month from 1 to 12 1

{datetime:dd} Day from 01 to 31 02

{datetime:d} Day from 1 to 12 2

{datetime:HH} Hour using the 24-hour format, from
00 to 23

10

{datetime:mm} Minutes from 00 to 24 06

{datetime:m} Minutes from 0 to 24 6

{datetime:ss} Seconds from 00 to 60 08

Extensibility and restrictionsExtensibility and restrictions

VALID EXPRESSION INVALID EXPRESSION

logs/{datetime:MM}/{datetime:dd} logs/{datetime:MM/dd}

downstream processing. Custom DateTime path patterns are easily implemented using the datetime keyword in
the Path Prefix field of your blob output, along with the format specifier. For example, {datetime:yyyy} .

The following format specifier tokens can be used alone or in combination to achieve custom DateTime formats:

If you do not wish to use custom DateTime patterns, you can add the {date} and/or {time} token to the Path Prefix
to generate a dropdown with built-in DateTime formats.

You can use as many tokens, {datetime:<specifier>} , as you like in the path pattern until you reach the Path Prefix
character limit. Format specifiers can't be combined within a single token beyond the combinations already listed
by the date and time dropdowns.

For a path partition of logs/MM/dd :

You may use the same format specifier multiple times in the Path Prefix. The token must be repeated each time.

Hive Streaming conventionsHive Streaming conventions

MSCK REPAIR TABLE while hive.exec.dynamic.partition true

ExampleExample

Next steps

Custom path patterns for blob storage can be used with the Hive Streaming convention, which expects folders to
be labeled with column= in the folder name.

For example, year={datetime:yyyy}/month={datetime:MM}/day={datetime:dd}/hour={datetime:HH} .

Custom output eliminates the hassle of altering tables and manually adding partitions to port data between Azure
Stream Analytics and Hive. Instead, many folders can be added automatically using:

Create a storage account, a resource group, a Stream Analytics job, and an input source according to the Azure
Stream Analytics Azure Portal quickstart guide. Use the same sample data used in the quickstart guide, also
available on GitHub.

Create a blob output sink with the following configuration:

The full path pattern is as follows:

year={datetime:yyyy}/month={datetime:MM}/day={datetime:dd}

When you start the job, a folder structure based on the path pattern is created in your blob container. You can drill
down to the day level.

https://raw.githubusercontent.com/azure/azure-stream-analytics/master/samples/gettingstarted/helloworldasa-inputstream.json

Understand outputs from Azure Stream Analytics

Integrate Azure Stream Analytics with Azure Machine
Learning (Preview)
6 minutes to read • Edit Online

NOTENOTE

Prerequisites

Add a machine learning model to your job

You can implement machine learning models as a user-defined function (UDF) in your Azure Stream Analytics jobs
to do real-time scoring and predictions on your streaming input data. Azure Machine Learning allows you to use
any popular open-source tool, such as Tensorflow, scikit-learn, or PyTorch, to prep, train, and deploy models.

This functionality is in public preview. You can access this feature on the Azure portal only by using the Stream Analytics
portal preview link. This functionality is also available in the latest version of Stream Analytics tools for Visual Studio.

Complete the following steps before you add a machine learning model as a function to your Stream Analytics job:

1. Use Azure Machine Learning to deploy your model as a web service.

2. Your scoring script should have sample inputs and outputs which is used by Azure Machine Learning to
generate a schema specification. Stream Analytics uses the schema to understand the function signature of
your web service.

3. Make sure your web service accepts and returns JSON serialized data.

4. Deploy your model on Azure Kubernetes Service for high-scale production deployments. If the web service
is not able to handle the number of requests coming from your job, the performance of your Stream
Analytics job will be degraded, which impacts latency.

You can add Azure Machine Learning functions to your Stream Analytics job directly from the Azure portal.

1. Navigate to your Stream Analytics job in the Azure portal, and select Functions under Job topology.
Then, select Azure ML Service from the + Add dropdown menu.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/machine-learning-udf.md
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml
https://aka.ms/asaportalpreview
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio-install
https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-and-where
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-and-where

2. Fill in the Azure Machine Learning Service function form with the following property values:

The following table describes each property of Azure ML Service functions in Stream Analytics.

PROPERTY DESCRIPTION

Function alias Enter a name to invoke the function in your query.

Subscription Your Azure subscription..

Azure ML workspace The Azure Machine Learning workspace you used to deploy
your model as a web service.

Deployments The web service hosting your model.

Function signature The signature of your web service inferred from the API's
schema specification. If your signature fails to load, check that
you have provided sample input and output in your scoring
script to automatically generate the schema.

Number of parallel requests per partition This is an advanced configuration to optimize high-scale
throughput. This number represents the concurrent requests
sent from each partition of your job to the web service. Jobs
with six streaming units (SU) and lower have one partition.
Jobs with 12 SUs have two partitions, 18 SUs have three
partitions and so on.

For example, if your job has two partitions and you set this
parameter to four, there will be eight concurrent requests
from your job to your web service. At this time of public
preview, this value defaults to 20 and cannot be updated.

Max batch count This is an advanced configuration for optimizing high-scale
throughput. This number represents the maximum number of
events be batched together in a single request sent to your
web service.

Supported input parameters

SELECT udf.score(<model-specific-data-structure>)
INTO output
FROM input

Pass multiple input parameters to the UDF

Create an input arrayCreate an input array

When your Stream Analytics query invokes an Azure Machine Learning UDF, the job creates a JSON serialized
request to the web service. The request is based on a model-specific schema. You have to provide a sample input
and output in your scoring script to automatically generate a schema. The schema allows Stream Analytics to
construct the JSON serialized request for any of the supported data types such as numpy, pandas and PySpark.
Multiple input events can be batched together in a single request.

The following Stream Analytics query is an example of how to invoke an Azure Machine Learning UDF:

Stream Analytics only supports passing one parameter for Azure Machine Learning functions. You may need to
prepare your data before passing it as an input to machine learning UDF.

Most common examples of inputs to machine learning models are numpy arrays and DataFrames. You can create
an array using a JavaScript UDF, and create a JSON-serialized DataFrame using the WITH clause.

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-and-where

function createArray(vendorid, weekday, pickuphour, passenger, distance) {
 'use strict';
 var array = [vendorid, weekday, pickuphour, passenger, distance]
 return array;
}

SELECT udf.score(
udf.createArray(vendorid, weekday, pickuphour, passenger, distance)
)
INTO output
FROM input

{
 "data": [
 ["1","Mon","12","1","5.8"],
 ["2","Wed","10","2","10"]
]
}

Create a Pandas or PySpark DataFrameCreate a Pandas or PySpark DataFrame

WITH
Dataframe AS (
SELECT vendorid, weekday, pickuphour, passenger, distance
FROM input
)

SELECT udf.score(Dataframe)
INTO output
FROM input

You can create a JavaScript UDF which accepts N number of inputs and creates an array that can be used as input
to your Azure Machine Learning UDF.

Once you have added the JavaScript UDF to your job, you can invoke your Azure Machine Learning UDF using
the following query:

The following JSON is an example request:

You can use the WITH clause to create a JSON serialized DataFrame that can be passed as input to your Azure
Machine Learning UDF as shown below.

The following query creates a DataFrame by selecting the necessary fields and uses the DataFrame as input to the
Azure Machine Learning UDF.

The following JSON is an example request from the previous query:

{
 "data": [{
 "vendorid": "1",
 "weekday": "Mon",
 "pickuphour": "12",
 "passenger": "1",
 "distance": "5.8"
 }, {
 "vendorid": "2",
 "weekday": "Tue",
 "pickuphour": "10",
 "passenger": "2",
 "distance": "10"
 }
]
}

Optimize the performance for Azure Machine Learning UDFs

Determine the right batch sizeDetermine the right batch size

Determine the number of parallel requests per partitionDetermine the number of parallel requests per partition

Next steps

When you deploy your model to Azure Kubernetes Service, you can profile your model to determine resource
utilization. You can also enable App Insights for your deployments to understand request rates, response times,
and failure rates.

If you have a scenario with high event throughput, you may need to change the following parameters in Stream
Analytics to achieve optimal performance with low end-to-end latencies:

1. Max batch count.
2. Number of parallel requests per partition.

After you have deployed your web service, you send sample request with varying batch sizes starting from 50 and
increasing it in order of hundreds. For example, 200, 500, 1000, 2000 and so on. You'll notice that after a certain
batch size, the latency of the response increases. The point after which latency of response increases should be the
max batch count for your job.

At optimal scaling, your Stream Analytics job should be able to send multiple parallel requests to your web service
and get a response within few milliseconds. The latency of the web service's response can directly impact the
latency and performance of your Stream Analytics job. If the call from your job to the web service takes a long
time, you will likely see an increase in watermark delay and may also see an increase in the number of backlogged
input events.

To prevent such latency, ensure that your Azure Kubernetes Service (AKS) cluster has been provisioned with the
right number of nodes and replicas. It's critical that your web service is highly available and returns successful
responses. If your job receives a service unavailable response (503) from your web service, it will continuously
retry with exponential back off. Any response other than success (200) and service unavailable (503) will cause
your job to go to a failed state.

Tutorial: Azure Stream Analytics JavaScript user-defined functions
Scale your Stream Analytics job with Azure Machine Learning Studio (classic) function

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-and-where
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-app-insights
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service

Develop .NET Standard user-defined functions for
Azure Stream Analytics jobs (Preview)
5 minutes to read • Edit Online

Overview

Package path

Supported types and mapping
UDF TYPE (C#) AZURE STREAM ANALYTICS TYPE

long bigint

double double

Azure Stream Analytics offers a SQL-like query language for performing transformations and computations over
streams of event data. There are many built-in functions, but some complex scenarios require additional flexibility.
With .NET Standard user-defined functions (UDF), you can invoke your own functions written in any .NET
standard language (C#, F#, etc.) to extend the Stream Analytics query language. UDFs allow you to perform
complex math computations, import custom ML models using ML.NET, and use custom imputation logic for
missing data. The UDF feature for Stream Analytics jobs is currently in preview and shouldn't be used in
production workloads.

.NET user-defined-function for cloud jobs is available in:

West Central US
North Europe
East US
West US
East US 2
West Europe

If you are interested in using this feature in any another region, you can request access.

Visual Studio tools for Azure Stream Analytics make it easy for you to write UDFs, test your jobs locally (even
offline), and publish your Stream Analytics job to Azure. Once published to Azure, you can deploy your job to IoT
devices using IoT Hub.

There are three ways to implement UDFs:

CodeBehind files in an ASA project
UDF from a local project
An existing package from an Azure storage account

The format of any UDF package has the path /UserCustomCode/CLR/* . Dynamic Link Libraries (DLLs) and
resources are copied under the /UserCustomCode/CLR/* folder, which helps isolate user DLLs from system and
Azure Stream Analytics DLLs. This package path is used for all functions regardless of the method used to employ
them.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-edge-csharp-udf-methods.md
https://aka.ms/ccodereqregion

string nvarchar(max)

dateTime dateTime

struct IRecord

object IRecord

Array<object> IArray

dictionary<string, object> IRecord

UDF TYPE (C#) AZURE STREAM ANALYTICS TYPE

CodeBehind

Local project

ExampleExample

You can write user-defined functions in the Script.asql CodeBehind. Visual Studio tools will automatically compile
the CodeBehind file into an assembly file. The assemblies are packaged as a zip file and uploaded to your storage
account when you submit your job to Azure. You can learn how to write a C# UDF using CodeBehind by following
the C# UDF for Stream Analytics Edge jobs tutorial.

User-defined functions can be written in an assembly that is later referenced in an Azure Stream Analytics query.
This is the recommended option for complex functions that require the full power of a .NET Standard language
beyond its expression language, such as procedural logic or recursion. UDFs from a local project might also be
used when you need to share the function logic across several Azure Stream Analytics queries. Adding UDFs to
your local project gives you the ability to debug and test your functions locally from Visual Studio.

To reference a local project:

1. Create a new class library in your solution.
2. Write the code in your class. Remember that the classes must be defined as public and objects must be defined

as static public.
3. Build your project. The tools will package all the artifacts in the bin folder to a zip file and upload the zip file to

the storage account. For external references, use assembly reference instead of the NuGet package.
4. Reference the new class in your Azure Stream Analytics project.
5. Add a new function in your Azure Stream Analytics project.
6. Configure the assembly path in the job configuration file, JobConfig.json . Set the Assembly Path to Local

Project Reference or CodeBehind.
7. Rebuild both the function project and the Azure Stream Analytics project.

In this example, UDFTest is a C# class library project and ASAUDFDemo is the Azure Stream Analytics project,
which will reference UDFTest.

1. Build your C# project, which will enable you to add a reference to your C# UDF from the Azure Stream
Analytics query.

2. Add the reference to the C# project in the ASA project. Right-click the References node and choose Add
Reference.

3. Choose the C# project name from the list.

4. You should see the UDFTest listed under References in Solution Explorer.

5. Right click on the Functions folder and choose New Item.

6. Add a C# function SquareFunction.json to your Azure Stream Analytics project.

7. Double-click the function in Solution Explorer to open the configuration dialog.

8. In the C# function configuration, choose Load from ASA Project Reference and the related assembly,
class, and method names from the dropdown list. To refer to the methods, types, and functions in the
Stream Analytics query, the classes must be defined as public and the objects must be defined as static
public.

Existing packages

SETTING SUGGESTED VALUE

Global Storage Settings Resource Choose data source from current account

Global Storage Settings Subscription < your subscription >

Global Storage Settings Storage Account < your storage account >

Custom Code Storage Settings Resource Choose data source from current account

Custom Code Storage Settings Storage Account < your storage account >

Custom Code Storage Settings Container < your storage container >

Custom Code Assembly Source Existing assembly packages from the cloud

Custom Code Assembly Source UserCustomCode.zip

Limitations

You can author .NET Standard UDFs in any IDE of your choice and invoke them from your Azure Stream Analytics
query. First compile your code and package all the DLLs. The format of the package has the path
/UserCustomCode/CLR/* . Then, upload UserCustomCode.zip to the root of the container in your Azure storage

account.

Once assembly zip packages have been uploaded to your Azure storage account, you can use the functions in
Azure Stream Analytics queries. All you need to do is include the storage information in the Stream Analytics job
configuration. You can't test the function locally with this option because Visual Studio tools will not download
your package. The package path is parsed directly to the service.

To configure the assembly path in the job configuration file, JobConfig.json :

Expand the User-Defined Code Configuration section, and fill out the configuration with the following
suggested values:

The UDF preview currently has the following limitations:

Next steps

.NET Standard UDFs can only be authored in Visual Studio and published to Azure. Read-only versions of

.NET Standard UDFs can be viewed under Functions in the Azure portal. Authoring of .NET Standard
functions is not supported in the Azure portal.

The Azure portal query editor shows an error when using .NET Standard UDF in the portal.

Because the custom code shares context with Azure Stream Analytics engine, custom code can't reference
anything that has a conflicting namespace/dll_name with Azure Stream Analytics code. For example, you
can't reference Newtonsoft Json.

Tutorial: Write a C# user-defined function for an Azure Stream Analytics job (Preview)
Tutorial: Azure Stream Analytics JavaScript user-defined functions
Use Visual Studio to view Azure Stream Analytics jobs

Understand and adjust Streaming Units
9 minutes to read • Edit Online

Configure Stream Analytics Streaming Units (SUs)

Monitor job performance

Streaming Units (SUs) represents the computing resources that are allocated to execute a Stream Analytics job.
The higher the number of SUs, the more CPU and memory resources are allocated for your job. This capacity lets
you focus on the query logic and abstracts the need to manage the hardware to run your Stream Analytics job in
a timely manner.

To achieve low latency stream processing, Azure Stream Analytics jobs perform all processing in memory. When
running out of memory, the streaming job fails. As a result, for a production job, it’s important to monitor a
streaming job’s resource usage, and make sure there is enough resource allocated to keep the jobs running 24/7.

The SU % utilization metric, which ranges from 0% to 100%, describes the memory consumption of your
workload. For a streaming job with minimal footprint, this metric is usually between 10% to 20%. If SU%
utilization is low and input events get backlogged, your workload likely requires more compute resources, which
requires you to increase the number of SUs. It’s best to keep the SU metric below 80% to account for occasional
spikes. Microsoft recommends setting an alert on 80% SU Utilization metric to prevent resource exhaustion. For
more information, see Tutorial: Set up alerts for Azure Stream Analytics jobs.

1. Sign in to Azure portal

2. In the list of resources, find the Stream Analytics job that you want to scale and then open it.

3. In the job page, under the Configure heading, select Scale.

4. Use the slider to set the SUs for the job. Notice that you are limited to specific SU settings.

5. You can change the number of SUs assigned to your job even when it is running. This is not possible if
your job uses a non-partitioned output or has a multi-step query with different PARTITION BY values. You
maybe restricted to choosing from a set of SU values when the job is running.

Using the Azure portal, you can track the throughput of a job:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-streaming-unit-consumption.md
https://portal.azure.com/
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization#query-using-non-partitioned-output
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization#multi-step-query-with-different-partition-by-values

 How many SUs are required for a job?

NOTENOTE

Factors that increase SU% utilization

Calculate the expected throughput of the workload. If the throughput is less than expected, tune the input
partition, tune the query, and add SUs to your job.

Choosing the number of required SUs for a particular job depends on the partition configuration for the inputs
and the query that's defined within the job. The Scale page allows you to set the right number of SUs. It is a best
practice to allocate more SUs than needed. The Stream Analytics processing engine optimizes for latency and
throughput at the cost of allocating additional memory.

In general, the best practice is to start with 6 SUs for queries that don't use PARTITION BY . Then determine the
sweet spot by using a trial and error method in which you modify the number of SUs after you pass
representative amounts of data and examine the SU% Utilization metric. The maximum number of streaming
units that can be used by a Stream Analytics job depends on the number of steps in the query defined for the job
and the number of partitions in each step. You can learn more about the limits here.

For more information about choosing the right number of SUs, see this page: Scale Azure Stream Analytics jobs
to increase throughput

Choosing how many SUs are required for a particular job depends on the partition configuration for the inputs and on the
query defined for the job. You can select up to your quota in SUs for a job. By default, each Azure subscription has a quota
of up to 500 SUs for all the analytics jobs in a specific region. To increase SUs for your subscriptions beyond this quota,
contact Microsoft Support. Valid values for SUs per job are 1, 3, 6, and up in increments of 6.

Temporal (time-oriented) query elements are the core set of stateful operators provided by Stream Analytics.
Stream Analytics manages the state of these operations internally on user’s behalf, by managing memory
consumption, checkpointing for resiliency, and state recovery during service upgrades. Even though Stream
Analytics fully manages the states, there are a number of best practice recommendations that users should
consider.

Note that a job with complex query logic could have high SU% utilization even when it is not continuously
receiving input events. This can happen after a sudden spike in input and output events. The job might continue

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization#calculate-the-maximum-streaming-units-of-a-job
https://support.microsoft.com

Stateful query logic in temporal elements

Windowed aggregates

SELECT count(*)
FROM input
GROUP BY clusterid, tumblingwindow (minutes, 5)

SELECT count(*)
FROM input PARTITION BY PartitionId
GROUP BY PartitionId, clusterid, tumblingwindow (minutes, 5)

Temporal joins

to maintain state in memory if the query is complex.

SU% utilization may suddenly drop to 0 for a short period before coming back to expected levels. This happens
due to transient errors or system initiated upgrades. Increasing number of streaming units for a job might not
reduce SU% Utilization if your query is not fully parallel.

While comparing utilization over a period of time, use event rate metrics. InputEvents and OutputEvents metrics
show how many events were read and processed. There are metrics that indicate number of error events as well,
such as deserialization errors. When the number of events per time unit increases, SU% increases in most cases.

One of the unique capability of Azure Stream Analytics job is to perform stateful processing, such as windowed
aggregates, temporal joins, and temporal analytic functions. Each of these operators keeps state information. The
maximum window size for these query elements is seven days.

The temporal window concept appears in several Stream Analytics query elements:

1. Windowed aggregates: GROUP BY of Tumbling, Hopping, and Sliding windows

2. Temporal joins: JOIN with DATEDIFF function

3. Temporal analytic functions: ISFIRST, LAST, and LAG with L IMIT DURATION

The following factors influence the memory used (part of streaming units metric) by Stream Analytics jobs:

The memory consumed (state size) for a windowed aggregate is not always directly proportional to the window
size. Instead, the memory consumed is proportional to the cardinality of the data, or the number of groups in
each time window.

For example, in the following query, the number associated with clusterid is the cardinality of the query.

In order to mitigate any issues caused by high cardinality in the previous query, you can send events to Event
Hub partitioned by clusterid , and scale out the query by allowing the system to process each input partition
separately using PARTITION BY as shown in the example below:

Once the query is partitioned out, it is spread out over multiple nodes. As a result, the number of clusterid

values coming into each node is reduced thereby reducing the cardinality of the group by operator.

Event Hub partitions should be partitioned by the grouping key to avoid the need for a reduce step. For more
information, see Event Hubs overview.

The memory consumed (state size) of a temporal join is proportional to the number of events in the temporal
wiggle room of the join, which is event input rate multiplied by the wiggle room size. In other words, the memory

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-what-is-event-hubs

SELECT clicks.id
FROM clicks
INNER JOIN impressions ON impressions.id = clicks.id AND DATEDIFF(hour, impressions, clicks) between 0 AND
10.

SELECT clicks.id
FROM clicks PARTITION BY PartitionId
INNER JOIN impressions PARTITION BY PartitionId
ON impression.PartitionId = clicks.PartitionId AND impressions.id = clicks.id AND DATEDIFF(hour, impressions,
clicks) between 0 AND 10

Temporal analytic functions

Out of order buffer

Input partition count

consumed by joins is proportional to the DateDiff time range multiplied by average event rate.

The number of unmatched events in the join affect the memory utilization for the query. The following query is
looking to find the ad impressions that generate clicks:

In this example, it is possible that lots of ads are shown and few people click on it and it is required to keep all the
events in the time window. Memory consumed is proportional to the window size and event rate.

To remediate this, send events to Event Hub partitioned by the join keys (ID in this case), and scale out the query
by allowing the system to process each input partition separately using PARTITION BY as shown:

Once the query is partitioned out, it is spread out over multiple nodes. As a result the number of events coming
into each node is reduced thereby reducing the size of the state kept in the join window.

The memory consumed (state size) of a temporal analytic function is proportional to the event rate multiply by
the duration. The memory consumed by analytic functions is not proportional to the window size, but rather
partition count in each time window.

The remediation is similar to temporal join. You can scale out the query using PARTITION BY .

User can configure the out of order buffer size in the Event Ordering configuration pane. The buffer is used to
hold inputs for the duration of the window, and reorder them. The size of the buffer is proportional to the event
input rate multiply by the out of order window size. The default window size is 0.

To remediate overflow of the out of order buffer, scale out query using PARTITION BY . Once the query is
partitioned out, it is spread out over multiple nodes. As a result, the number of events coming into each node is
reduced thereby reducing the number of events in each reorder buffer.

Each input partition of a job input has a buffer. The larger number of input partitions, the more resource the job
consumes. For each streaming unit, Azure Stream Analytics can process roughly 1 MB/s of input. Therefore, you
can optimize by matching the number of Stream Analytics streaming units with the number of partitions in your
Event Hub.

Typically, a job configured with one streaming unit is sufficient for an Event Hub with two partitions (which is the
minimum for Event Hub). If the Event Hub has more partitions, your Stream Analytics job consumes more
resources, but not necessarily uses the extra throughput provided by Event Hub.

For a job with 6 streaming units, you may need 4 or 8 partitions from the Event Hub. However, avoid too many
unnecessary partitions since that causes excessive resource usage. For example, an Event Hub with 16 partitions

Reference data

Use of UDF functionsUse of UDF functions

Next steps

or larger in a Stream Analytics job that has 1 streaming unit.

Reference data in ASA are loaded into memory for fast lookup. With the current implementation, each join
operation with reference data keeps a copy of the reference data in memory, even if you join with the same
reference data multiple times. For queries with PARTITION BY , each partition has a copy of the reference data,
so the partitions are fully decoupled. With the multiplier effect, memory usage can quickly get very high if you
join with reference data multiple times with multiple partitions.

When you add a UDF function, Azure Stream Analytics loads the JavaScript runtime into memory. This will affect
the SU%.

Create parallelizable queries in Azure Stream Analytics
Scale Azure Stream Analytics jobs to increase throughput

Leverage query parallelization in Azure Stream
Analytics
13 minutes to read • Edit Online

What are the parts of a Stream Analytics job?

Partitions in sources and sinks

InputsInputs

OutputsOutputs

This article shows you how to take advantage of parallelization in Azure Stream Analytics. You learn how to scale
Stream Analytics jobs by configuring input partitions and tuning the analytics query definition. As a prerequisite,
you may want to be familiar with the notion of Streaming Unit described in Understand and adjust Streaming
Units.

A Stream Analytics job definition includes inputs, a query, and output. Inputs are where the job reads the data
stream from. The query is used to transform the data input stream, and the output is where the job sends the job
results to.

A job requires at least one input source for data streaming. The data stream input source can be stored in an
Azure event hub or in Azure blob storage. For more information, see Introduction to Azure Stream Analytics and
Get started using Azure Stream Analytics.

Scaling a Stream Analytics job takes advantage of partitions in the input or output. Partitioning lets you divide
data into subsets based on a partition key. A process that consumes the data (such as a Streaming Analytics job)
can consume and write different partitions in parallel, which increases throughput.

All Azure Stream Analytics input can take advantage of partitioning:

EventHub (need to set the partition key explicitly with PARTITION BY keyword)
IoT Hub (need to set the partition key explicitly with PARTITION BY keyword)
Blob storage

When you work with Stream Analytics, you can take advantage of partitioning in the outputs:

Azure Data Lake Storage
Azure Functions
Azure Table
Blob storage (can set the partition key explicitly)
Cosmos DB (need to set the partition key explicitly)
Event Hubs (need to set the partition key explicitly)
IoT Hub (need to set the partition key explicitly)
Service Bus
SQL and SQL Data Warehouse with optional partitioning: see more information on the Output to Azure SQL
Database page.

Power BI doesn't support partitioning. However you can still partition the input as described in this section

For more information about partitions, see the following articles:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-parallelization.md
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-sql-output-perf

 Embarrassingly parallel jobs

Simple querySimple query

 SELECT TollBoothId
 FROM Input1 Partition By PartitionId
 WHERE TollBoothId > 100

Event Hubs features overview
Data partitioning

An embarrassingly parallel job is the most scalable scenario we have in Azure Stream Analytics. It connects one
partition of the input to one instance of the query to one partition of the output. This parallelism has the following
requirements:

1. If your query logic depends on the same key being processed by the same query instance, you must make
sure that the events go to the same partition of your input. For Event Hubs or IoT Hub, this means that the
event data must have the PartitionKey value set. Alternatively, you can use partitioned senders. For blob
storage, this means that the events are sent to the same partition folder. If your query logic does not
require the same key to be processed by the same query instance, you can ignore this requirement. An
example of this logic would be a simple select-project-filter query.

2. Once the data is laid out on the input side, you must make sure that your query is partitioned. This
requires you to use PARTITION BY in all the steps. Multiple steps are allowed, but they all must be
partitioned by the same key. Under compatibility level 1.0 and 1.1, the partitioning key must be set to
PartitionId in order for the job to be fully parallel. For jobs with compatility level 1.2 and higher, custom
column can be specified as Partition Key in the input settings and the job will be paralellized automatically
even without PARTITION BY clause. For event hub output the property "Partition key column" must be set
to use "PartitionId".

3. Most of our output can take advantage of partitioning, however if you use an output type that doesn't
support partitioning your job won't be fully parallel. Refer to the output section for more details.

4. The number of input partitions must equal the number of output partitions. Blob storage output can
support partitions and inherits the partitioning scheme of the upstream query. When a partition key for
Blob storage is specified, data is partitioned per input partition thus the result is still fully parallel. Here are
examples of partition values that allow a fully parallel job:

8 event hub input partitions and 8 event hub output partitions
8 event hub input partitions and blob storage output
8 event hub input partitions and blob storage output partitioned by a custom field with arbitrary
cardinality
8 blob storage input partitions and blob storage output
8 blob storage input partitions and 8 event hub output partitions

The following sections discuss some example scenarios that are embarrassingly parallel.

Input: Event hub with 8 partitions
Output: Event hub with 8 partitions ("Partition key column" must be set to use "PartitionId")

Query:

This query is a simple filter. Therefore, we don't need to worry about partitioning the input that is being sent to
the event hub. Notice that jobs with compatibility level before 1.2 must include PARTITION BY PartitionId
clause, so it fulfills requirement #2 from earlier. For the output, we need to configure the event hub output in the
job to have the partition key set to PartitionId. One last check is to make sure that the number of input partitions

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-features
https://docs.microsoft.com/azure/architecture/best-practices/data-partitioning

Query with a grouping keyQuery with a grouping key

 SELECT COUNT(*) AS Count, TollBoothId
 FROM Input1 Partition By PartitionId
 GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId

Example of scenarios that are not embarrassingly parallel

Mismatched partition countMismatched partition count

Query using non-partitioned outputQuery using non-partitioned output

Multi-step query with different PARTITION BY valuesMulti-step query with different PARTITION BY values

 WITH Step1 AS (
 SELECT COUNT(*) AS Count, TollBoothId, PartitionId
 FROM Input1 Partition By PartitionId
 GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId
)

 SELECT SUM(Count) AS Count, TollBoothId
 FROM Step1 Partition By TollBoothId
 GROUP BY TumblingWindow(minute, 3), TollBoothId

is equal to the number of output partitions.

Input: Event hub with 8 partitions
Output: Blob storage

Query:

This query has a grouping key. Therefore, the events grouped together must be sent to the same Event Hub
partition. Since in this example we group by TollBoothID, we should be sure that TollBoothID is used as the
partition key when the events are sent to Event Hub. Then in ASA, we can use PARTITION BY PartitionId to
inherit from this partition scheme and enable full parallelization. Since the output is blob storage, we don't need
to worry about configuring a partition key value, as per requirement #4.

In the previous section, we showed some embarrassingly parallel scenarios. In this section, we discuss scenarios
that don't meet all the requirements to be embarrassingly parallel.

Input: Event hub with 8 partitions
Output: Event hub with 32 partitions

In this case, it doesn't matter what the query is. If the input partition count doesn't match the output partition
count, the topology isn't embarrassingly parallel.+ However we can still get some level or parallelization.

Input: Event hub with 8 partitions
Output: Power BI

Power BI output doesn't currently support partitioning. Therefore, this scenario is not embarrassingly parallel.

Input: Event hub with 8 partitions
Output: Event hub with 8 partitions

Query:

As you can see, the second step uses TollBoothId as the partitioning key. This step is not the same as the first
step, and it therefore requires us to do a shuffle.

The preceding examples show some Stream Analytics jobs that conform to (or don't) an embarrassingly parallel

Compatibility level 1.2 - Multi-step query with different PARTITION BY valuesCompatibility level 1.2 - Multi-step query with different PARTITION BY values

 WITH Step1 AS (
 SELECT COUNT(*) AS Count, TollBoothId
 FROM Input1
 GROUP BY TumblingWindow(minute, 3), TollBoothId
)

 SELECT SUM(Count) AS Count, TollBoothId
 FROM Step1
 GROUP BY TumblingWindow(minute, 3), TollBoothId

Calculate the maximum streaming units of a job

Steps in a querySteps in a query

 WITH Step1 AS (
 SELECT COUNT(*) AS Count, TollBoothId
 FROM Input1 Partition By PartitionId
 GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId
)
 SELECT SUM(Count) AS Count, TollBoothId
 FROM Step1
 GROUP BY TumblingWindow(minute,3), TollBoothId

NOTENOTE

Partition a stepPartition a step

topology. If they do conform, they have the potential for maximum scale. For jobs that don't fit one of these
profiles, scaling guidance will be available in future updates. For now, use the general guidance in the following
sections.

Input: Event hub with 8 partitions
Output: Event hub with 8 partitions ("Partition key column" must be set to use "TollBoothId")

Query:

Compatibility level 1.2 enables parallel query execution by default. For example, query from the previous section
will be parttioned as long as "TollBoothId" column is set as input Partition Key. PARTITION BY ParttionId clause is
not required.

The total number of streaming units that can be used by a Stream Analytics job depends on the number of steps
in the query defined for the job and the number of partitions for each step.

A query can have one or many steps. Each step is a subquery defined by the WITH keyword. The query that is
outside the WITH keyword (one query only) is also counted as a step, such as the SELECT statement in the
following query:

Query:

This query has two steps.

This query is discussed in more detail later in the article.

Partitioning a step requires the following conditions:

The input source must be partitioned.
The SELECT statement of the query must read from a partitioned input source.

Calculate the max streaming units for a jobCalculate the max streaming units for a job

QUERY MAX SUS FOR THE JOB

6

96 (6 * 16 partitions)

6

24 (18 for partitioned steps + 6 for non-partitioned steps

Examples of scalingExamples of scaling

 SELECT COUNT(*) AS Count, TollBoothId
 FROM Input1
 GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId

 SELECT COUNT(*) AS Count, TollBoothId
 FROM Input1 Partition By PartitionId
 GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId

The query within the step must have the PARTITION BY keyword.

When a query is partitioned, the input events are processed and aggregated in separate partition groups, and
outputs events are generated for each of the groups. If you want a combined aggregate, you must create a second
non-partitioned step to aggregate.

All non-partitioned steps together can scale up to six streaming units (SUs) for a Stream Analytics job. In addition
to this, you can add 6 SUs for each partition in a partitioned step. You can see some examples in the table below.

The query contains one step.
The step is not partitioned.

The input data stream is partitioned by 16.
The query contains one step.
The step is partitioned.

The query contains two steps.
Neither of the steps is partitioned.

The input data stream is partitioned by 3.
The query contains two steps. The input step is
partitioned and the second step is not.
The SELECT statement reads from the partitioned
input.

The following query calculates the number of cars within a three-minute window going through a toll station that
has three tollbooths. This query can be scaled up to six SUs.

To use more SUs for the query, both the input data stream and the query must be partitioned. Since the data
stream partition is set to 3, the following modified query can be scaled up to 18 SUs:

When a query is partitioned, the input events are processed and aggregated in separate partition groups. Output
events are also generated for each of the groups. Partitioning can cause some unexpected results when the
GROUP BY field is not the partition key in the input data stream. For example, the TollBoothId field in the
previous query is not the partition key of Input1. The result is that the data from TollBooth #1 can be spread in
multiple partitions.

Each of the Input1 partitions will be processed separately by Stream Analytics. As a result, multiple records of the
car count for the same tollbooth in the same Tumbling window will be created. If the input partition key can't be
changed, this problem can be fixed by adding a non-partition step to aggregate values across partitions, as in the

 WITH Step1 AS (
 SELECT COUNT(*) AS Count, TollBoothId
 FROM Input1 Partition By PartitionId
 GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId
)

 SELECT SUM(Count) AS Count, TollBoothId
 FROM Step1
 GROUP BY TumblingWindow(minute, 3), TollBoothId

NOTENOTE

Achieving higher throughputs at scale

Event HubEvent Hub

INGESTION RATE (EVENTS PER SECOND) STREAMING UNITS OUTPUT RESOURCES

1K 1 2 TU

5K 6 6 TU

10K 12 10 TU

Azure SQLAzure SQL

INGESTION RATE (EVENTS PER SECOND) STREAMING UNITS OUTPUT RESOURCES

1K 3 S3

5K 18 P4

10K 36 P6

following example:

This query can be scaled to 24 SUs.

If you are joining two streams, make sure that the streams are partitioned by the partition key of the column that you use
to create the joins. Also make sure that you have the same number of partitions in both streams.

An embarrassingly parallel job is necessary but not sufficient to sustain a higher throughput at scale. Every
storage system and its corresponding Stream Analytics output has variations on how to achieve the best possible
write throughput. As with any at-scale scenario, there are some challenges which can be solved by using the right
configurations. This section discusses configurations for a few common outputs and provides samples for
sustaining ingestion rates of 1K, 5K and 10K events per second.

The following observations use a Stream Analytics job with stateless (passthrough) query, a basic JavaScript UDF
which writes to Event Hub, Azure SQL DB, or Cosmos DB.

The Event Hub solution scales linearly in terms of streaming units (SU) and throughput, making it the most
efficient and performant way to analyze and stream data out of Stream Analytics. Jobs can be scaled up to 192
SU, which roughly translates to processing up to 200 MB/s, or 19 trillion events per day.

Azure SQL supports writing in parallel, called Inherit Partitioning, but it's not enabled by default. However,
enabling Inherit Partitioning, along with a fully parallel query, may not be sufficient to achieve higher

https://github.com/azure-samples/streaming-at-scale/tree/master/eventhubs-streamanalytics-eventhubs
https://github.com/azure-samples/streaming-at-scale/tree/master/eventhubs-streamanalytics-azuresql

Cosmos DBCosmos DB

INGESTION RATE (EVENTS PER SECOND) STREAMING UNITS OUTPUT RESOURCES

1K 3 20K RU

5K 24 60K RU

10K 48 120K RU

{
 "eventId": "b81d241f-5187-40b0-ab2a-940faf9757c0",
 "complexData": {
 "moreData0": 51.3068118685458,
 "moreData22": 45.34076957651598
 },
 "value": 49.02278128887753,
 "deviceId": "contoso://device-id-1554",
 "type": "CO2",
 "createdAt": "2019-05-16T17:16:40.000003Z"
}

NOTENOTE

Identifying BottlenecksIdentifying Bottlenecks

Get help

throughputs. SQL write throughputs depend significantly on your SQL Azure database configuration and table
schema. The SQL Output Performance article has more detail about the parameters that can maximize your write
throughput. As noted in the Azure Stream Analytics output to Azure SQL Database article, this solution doesn't
scale linearly as a fully parallel pipeline beyond 8 partitions and may need repartitioning before SQL output (see
INTO). Premium SKUs are needed to sustain high IO rates along with overhead from log backups happening
every few minutes.

Cosmos DB output from Stream Analytics has been updated to use native integration under compatibility level
1.2. Compatibility level 1.2 enables significantly higher throughput and reduces RU consumption compared to
1.1, which is the default compatibility level for new jobs. The solution uses CosmosDB containers partitioned on
/deviceId and the rest of solution is identically configured.

All Streaming at Scale azure samples use an Event Hub fed by load simulating test clients as input. Each input
event is a 1KB JSON document, which translates configured ingestion rates to throughput rates (1MB/s, 5MB/s
and 10MB/s) easily. Events simulate an IoT device sending the following JSON data (in a shortened form) for up
to 1K devices:

The configurations are subject to change due to the various components used in the solution. For a more accurate estimate,
customize the samples to fit your scenario.

Use the Metrics pane in your Azure Stream Analytics job to identify bottlenecks in your pipeline. Review
Input/Output Events for throughput and "Watermark Delay" or Backlogged Events to see if the job is keeping
up with the input rate. For Event Hub metrics, look for Throttled Requests and adjust the Threshold Units
accordingly. For Cosmos DB metrics, review Max consumed RU/s per partition key range under Throughput
to ensure your partition key ranges are uniformly consumed. For Azure SQL DB, monitor Log IO and CPU .

For further assistance, try our Azure Stream Analytics forum.

https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics#into-shard-count
https://github.com/azure-samples/streaming-at-scale/tree/master/eventhubs-streamanalytics-cosmosdb
https://github.com/azure-samples/streaming-at-scale
https://azure.microsoft.com/blog/new-metric-in-azure-stream-analytics-tracks-latency-of-your-streaming-pipeline/
https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Next steps
Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Use repartitioning to optimize processing with Azure
Stream Analytics
2 minutes to read • Edit Online

How to repartition

SELECT *
INTO output
FROM input
PARTITION BY DeviceID
INTO 10

WITH step1 AS (SELECT * FROM input1 PARTITION BY DeviceID INTO 10),
step2 AS (SELECT * FROM input2 PARTITION BY DeviceID INTO 10)

SELECT * INTO output FROM step1 PARTITION BY DeviceID UNION step2 PARTITION BY DeviceID

Streaming Units for repartitions

This article shows you how to use repartitioning to scale your Azure Stream Analytics query for scenarios that can't
be fully parallelized.

You might not be able to use parallelization if:

You don't control the partition key for your input stream.
Your source "sprays" input across multiple partitions that later need to be merged.

Repartitioning, or reshuffling, is required when you process data on a stream that's not sharded according to a
natural input scheme, such as PartitionId for Event Hubs. When you repartition, each shard can be processed
independently, which allows you to linearly scale out your streaming pipeline.

To repartition, use the keyword INTO after a PARTITION BY statement in your query. The following example
partitions the data by DeviceID into a partition count of 10. Hashing of DeviceID is used to determine which
partition shall accept which substream. The data is flushed independently for each partitioned stream, assuming
the output supports partitioned writes, and has 10 partitions.

The following example query joins two streams of repartitioned data. When joining two streams of repartitioned
data, the streams must have the same partition key and count. The outcome is a stream that has the same partition
scheme.

The output scheme should match the stream scheme key and count so that each substream can be flushed
independently. The stream could also be merged and repartitioned again by a different scheme before flushing, but
you should avoid that method because it adds to the general latency of the processing and increases resource
utilization.

Experiment and observe the resource usage of your job to determine the exact number of partitions you need. The
number of streaming units (SU) must be adjusted according to the physical resources needed for each partition. In
general, six SUs are needed for each partition. If there are insufficient resources assigned to the job, the system will
only apply the repartition if it benefits the job.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/repartition.md

Repartitions for SQL output

SELECT * INTO [output] FROM [input] PARTITION BY DeviceID INTO 10

Next steps

When your job uses SQL database for output, use explicit repartitioning to match the optimal partition count to
maximize throughput. Since SQL works best with eight writers, repartitioning the flow to eight before flushing, or
somewhere further upstream, may benefit job performance.

When there are more than 8 input partitions, inheriting the input partitioning scheme might not be an appropriate
choice. Consider using INTO in your query to explicitly specify the number of output writers.

The following example reads from the input, regardless of it being naturally partitioned, and repartitions the
stream tenfold according to the DeviceID dimension and flushes the data to output.

For more information, see Azure Stream Analytics output to Azure SQL Database.

Get started with Azure Stream Analytics
Leverage query parallelization in Azure Stream Analytics

https://docs.microsoft.com/stream-analytics-query/into-azure-stream-analytics#into-shard-count

Scale an Azure Stream Analytics job to increase
throughput
6 minutes to read • Edit Online

Case 1 – Your query is inherently fully parallelizable across input
partitions

This article shows you how to tune a Stream Analytics query to increase throughput for Streaming Analytics
jobs. You can use the following guide to scale your job to handle higher load and take advantage of more
system resources (such as more bandwidth, more CPU resources, more memory). As a prerequisite, you may
need to read the following articles:

Understand and adjust Streaming Units
Create parallelizable jobs

If your query is inherently fully parallelizable across input partitions, you can follow the following steps:

1. Author your query to be embarrassingly parallel by using PARTITION BY keyword. See more details in
the Embarrassingly parallel jobs section on this page.

2. Depending on output types used in your query, some output may either be not parallelizable, or need
further configuration to be embarrassingly parallel. For example, SQL, SQL DW, and PowerBI outputs are
not parallelizable. Outputs are always merged before sending to the output sink. Blobs, Tables, ADLS,
Service Bus, and Azure Function are automatically parallelized. CosmosDB and Event Hub needs to have
the PartitionKey configuration set to match with the PARTITION BY field (usually PartitionId). For Event
Hub, also pay extra attention to match the number of partitions for all inputs and all outputs to avoid
cross-over between partitions.

3. Run your query with 6 SU (which is the full capacity of a single computing node) to measure maximum
achievable throughput, and if you are using GROUP BY , measure how many groups (cardinality) the job
can handle. General symptoms of the job hitting system resource limits are the following.

4. Once you have determined the limits of what a 6 SU job can reach, you can extrapolate linearly the
processing capacity of the job as you add more SUs, assuming you don’t have any data skew that makes
certain partition "hot."

SU % utilization metric is over 80%. This indicates memory usage is high. The factors contributing
to the increase of this metric are described here.
Output timestamp is falling behind with respect to wall clock time. Depending on your query logic,
the output timestamp may have a logic offset from the wall clock time. However, they should
progress at roughly the same rate. If the output timestamp is falling further and further behind, it’s
an indicator that the system is overworking. It can be a result of downstream output sink throttling,
or high CPU utilization. We don’t provide CPU utilization metric at this time, so it can be difficult to
differentiate the two.

In job diagram, there is a per partition backlog event metric for each input. If the backlog event
metric keeps increasing, it’s also an indicator that the system resource is constrained (either
because of output sink throttling, or high CPU).

If the issue is due to sink throttling, you may need to increase the number of output
partitions (and also input partitions to keep the job fully parallelizable), or increase the
amount of resources of the sink (for example number of Request Units for CosmosDB).

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-scale-jobs.md

NOTENOTE

Case 2 - If your query is not embarrassingly parallel.

WITH Step1 AS (
SELECT COUNT(*) AS Count, TollBoothId, PartitionId
FROM Input1 Partition By PartitionId
GROUP BY TumblingWindow(minute, 3), TollBoothId, PartitionId
)
SELECT SUM(Count) AS Count, TollBoothId
FROM Step1
GROUP BY TumblingWindow(minute, 3), TollBoothId

NOTENOTE

Case 3 - You are running lots of independent queries in a job.

Choose the right number of Streaming Units: Because Stream Analytics creates a processing node for each 6 SU
added, it’s best to make the number of nodes a divisor of the number of input partitions, so the partitions can be
evenly distributed across the nodes. For example, you have measured your 6 SU job can achieve 4 MB/s processing
rate, and your input partition count is 4. You can choose to run your job with 12 SU to achieve roughly 8 MB/s
processing rate, or 24 SU to achieve 16 MB/s. You can then decide when to increase SU number for the job to what
value, as a function of your input rate.

If your query is not embarrassingly parallel, you can follow the following steps.

1. Start with a query with no PARTITION BY first to avoid partitioning complexity, and run your query with
6 SU to measure maximum load as in Case 1.

2. If you can achieve your anticipated load in term of throughput, you are done. Alternatively, you may
choose to measure the same job running at 3 SU and 1 SU, to find out the minimum number of SU that
works for your scenario.

3. If you can’t achieve the desired throughput, try to break your query into multiple steps if possible, if it
doesn’t have multiple steps already, and allocate up to 6 SU for each step in the query. For example if you
have 3 steps, allocate 18 SU in the "Scale" option.

4. When running such a job, Stream Analytics puts each step on its own node with dedicated 6 SU
resources.

5. If you still haven’t achieved your load target, you can attempt to use PARTITION BY starting from steps
closer to the input. For GROUP BY operator that may not be naturally partitionable, you can use the
local/global aggregate pattern to perform a partitioned GROUP BY followed by a non-partitioned
GROUP BY . For example, if you want to count how many cars going through each toll booth every 3
minutes, and the volume of the data is beyond what can be handled by 6 SU.

Query:

In the query above, you are counting cars per toll booth per partition, and then adding the count from all
partitions together.

Once partitioned, for each partition of the step, allocate up to 6 SU, each partition having 6 SU is the
maximum, so each partition can be placed on its own processing node.

If your query cannot be partitioned, adding additional SU in a multi-steps query may not always improve throughput.
One way to gain performance is to reduce volume on the initial steps using local/global aggregate pattern, as
described above in step 5.

NOTENOTE

Get help

Next steps

For certain ISV use cases, where it’s more cost-efficient to process data from multiple tenants in a single job,
using separate inputs and outputs for each tenant, you may end up running quite a few (for example 20)
independent queries in a single job. The assumption is each such subquery’s load is relatively small. In this
case, you can follow the following steps.

1. In this case, do not use PARTITION BY in the query
2. Reduce the input partition count to the lowest possible value of 2 if you are using Event Hub.
3. Run the query with 6 SU. With expected load for each subquery, add as many such subqueries as

possible, until the job is hitting system resource limits. Refer to Case 1 for the symptoms when this
happens.

4. Once you are hitting the subquery limit measured above, start adding the subquery to a new job. The
number of jobs to run as a function of the number of independent queries should be fairly linear,
assuming you don’t have any load skew. You can then forecast how many 6 SU jobs you need to run as a
function of the number of tenants you would like to serve.

5. When using reference data join with such queries, union the inputs together before joining with the same
reference data. Then, split out the events if necessary. Otherwise, each reference data join keeps a copy of
reference data in memory, likely blowing up the memory usage unnecessarily.

How many tenants to put in each job? This query pattern often has a large number of subqueries, and results in very
large and complex topology. The controller of the job may not be able to handle such a large topology. As a rule of
thumb, stay under 40 tenants for 1 SU job, and 60 tenants for 3 SU and 6 SU jobs. When you are exceeding the
capacity of the controller, the job will not start successfully.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Azure Stream Analytics job states
2 minutes to read • Edit Online

STATE DESCRIPTION RECOMMENDED ACTIONS

Running Your job is running on Azure reading
events coming from the defined input
sources, processing them and writing
the results to the configured output
sinks.

It is a best practice to track your job’s
performance by monitoring key metrics.

Stopped Your job is stopped and does not
process events.

NA

Degraded There might be intermittent issues with
your input and output connections.
These errors are called transient errors
which might make your job enter a
Degraded state. Stream Analytics will
immediately try to recover from such
errors and return to a Running state
(within few minutes). These errors could
happen due to network issues,
availability of other Azure resources,
deserialization errors etc. Your job’s
performance may be impacted when
job is in degraded state.

You can look at the diagnostic or
activity logs to learn more about the
cause of these transient errors. In cases
such as deserialization errors, it is
recommended to take corrective action
to ensure events aren't malformed. If
the job keeps reaching the resource
utilization limit, try to increase the SU
number or parallelize your job. In other
cases where you cannot take any action,
Stream Analytics will try to recover to a
Running state.
You can use watermark delay metric to
understand if these transient errors are
impacting your job's performance.

Failed Your job encountered a critical error
resulting in a failed state. Events aren't
read and processed. Runtime errors are
a common cause for jobs ending up in a
failed state.

You can configure alerts so that you get
notified when job goes to Failed state.

You can debug using activity and
diagnostic logs to identify root cause
and address the issue.

Next steps

A Stream Analytics job could be in one of four states at any given time: running, stopped, degraded, or failed. You
can find the state of your job on your Stream Analytics job's Overview page in the Azure portal.

Setup alerts for Azure Stream Analytics jobs
Metrics available in Stream Analytics
Troubleshoot using activity and diagnostic logs

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/job-states.md
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-set-up-alerts#scenarios-to-monitor
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-job-diagnostic-logs#debugging-using-activity-logs
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-set-up-alerts#scenarios-to-monitor
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-set-up-alerts#set-up-alerts-in-the-azure-portal
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-job-diagnostic-logs#debugging-using-activity-logs
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-monitoring#metrics-available-for-stream-analytics
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-job-diagnostic-logs

Introduction to Stream Analytics windowing functions
2 minutes to read • Edit Online

Tumbling window

In time-streaming scenarios, performing operations on the data contained in temporal windows is a common
pattern. Stream Analytics has native support for windowing functions, enabling developers to author complex
stream processing jobs with minimal effort.

There are four kinds of temporal windows to choose from: Tumbling, Hopping, Sliding, and Session windows.
You use the window functions in the GROUP BY clause of the query syntax in your Stream Analytics jobs. You can
also aggregate events over multiple windows using the Windows() function.

All the windowing operations output results at the end of the window. The output of the window will be single
event based on the aggregate function used. The output event will have the time stamp of the end of the window
and all window functions are defined with a fixed length.

Tumbling window functions are used to segment a data stream into distinct time segments and perform a function
against them, such as the example below. The key differentiators of a Tumbling window are that they repeat, do
not overlap, and an event cannot belong to more than one tumbling window.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-window-functions.md
https://docs.microsoft.com/stream-analytics-query/tumbling-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/hopping-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/sliding-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/session-window-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/group-by-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/windows-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/windowing-azure-stream-analytics

Hopping window

Sliding window

Hopping window functions hop forward in time by a fixed period. It may be easy to think of them as Tumbling
windows that can overlap, so events can belong to more than one Hopping window result set. To make a Hopping
window the same as a Tumbling window, specify the hop size to be the same as the window size.

Sliding window functions, unlike Tumbling or Hopping windows, produce an output only when an event occurs.
Every window will have at least one event and the window continuously moves forward by an € (epsilon). Like
hopping windows, events can belong to more than one sliding window.

Session window

Next steps

Session window functions group events that arrive at similar times, filtering out periods of time where there is no
data. It has three main parameters: timeout, maximum duration, and partitioning key (optional).

A session window begins when the first event occurs. If another event occurs within the specified timeout from the
last ingested event, then the window extends to include the new event. Otherwise if no events occur within the
timeout, then the window is closed at the timeout.

If events keep occurring within the specified timeout, the session window will keep extending until maximum
duration is reached. The maximum duration checking intervals are set to be the same size as the specified max
duration. For example, if the max duration is 10, then the checks on if the window exceed maximum duration will
happen at t = 0, 10, 20, 30, etc.

When a partition key is provided, the events are grouped together by the key and session window is applied to
each group independently. This partitioning is useful for cases where you need different session windows for
different users or devices.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs

Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Introduction to Stream Analytics geospatial functions
3 minutes to read • Edit Online

CreateLineString

SELECT
 CreateLineString(CreatePoint(input.latitude, input.longitude), CreatePoint(10.0, 10.0), CreatePoint(10.5,
10.5))
FROM input

Input exampleInput example

LATITUDE LONGITUDE

3.0 -10.2

-87.33 20.2321

Output exampleOutput example

CreatePoint

Geospatial functions in Azure Stream Analytics enable real-time analytics on streaming geospatial data. With just a
few lines of code, you can develop a production grade solution for complex scenarios.

Examples of scenarios that can benefit from geospatial functions include:

Ride-sharing
Fleet management
Asset tracking
Geo-fencing
Phone tracking across cell sites

Stream Analytics Query Language has seven built-in geospatial functions: CreateLineString, CreatePoint,
CreatePolygon, ST_DISTANCE , ST_OVERLAPS, ST_INTERSECTS, and ST_WITHIN .

The CreateLineString function accepts points and returns a GeoJSON LineString, which can be plotted as a line
on a map. You must have at least two points to create a LineString. The LineString points will be connected in
order.

The following query uses CreateLineString to create a LineString using three points. The first point is created
from streaming input data, while the other two are created manually.

{"type" : "LineString", "coordinates" : [[-10.2, 3.0], [10.0, 10.0], [10.5, 10.5]]}

{"type" : "LineString", "coordinates" : [[20.2321, -87.33], [10.0, 10.0], [10.5, 10.5]]}

To learn more, visit the CreateLineString reference.

The CreatePoint function accepts a latitude and longitude and returns a GeoJSON point, which can be plotted on
a map. Your latitudes and longitudes must be a float datatype.

The following example query uses CreatePoint to create a point using latitudes and longitudes from streaming

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-geospatial-functions.md
https://docs.microsoft.com/stream-analytics-query/createlinestring

SELECT
 CreatePoint(input.latitude, input.longitude)
FROM input

Input exampleInput example

LATITUDE LONGITUDE

3.0 -10.2

-87.33 20.2321

Output exampleOutput example

CreatePolygon

SELECT
 CreatePolygon(CreatePoint(input.latitude, input.longitude), CreatePoint(10.0, 10.0), CreatePoint(10.5,
10.5), CreatePoint(input.latitude, input.longitude))
FROM input

Input exampleInput example

LATITUDE LONGITUDE

3.0 -10.2

-87.33 20.2321

Output exampleOutput example

ST_DISTANCE

input data.

{"type" : "Point", "coordinates" : [-10.2, 3.0]}

{"type" : "Point", "coordinates" : [20.2321, -87.33]}

To learn more, visit the CreatePoint reference.

The CreatePolygon function accepts points and returns a GeoJSON polygon record. The order of points must
follow right-hand ring orientation, or counter-clockwise. Imagine walking from one point to another in the order
they were declared. The center of the polygon would be to your left the entire time.

The following example query uses CreatePolygon to create a polygon from three points. The first two points are
created manually, and the last point is created from input data.

{"type" : "Polygon", "coordinates" : [[[-10.2, 3.0], [10.0, 10.0], [10.5, 10.5], [-10.2, 3.0]]]}

{"type" : "Polygon", "coordinates" : [[[20.2321, -87.33], [10.0, 10.0], [10.5, 10.5], [20.2321, -87.33]]]}

To learn more, visit the CreatePolygon reference.

The ST_DISTANCE function returns the distance between two points in meters.

The following query uses ST_DISTANCE to generate an event when a gas station is less than 10 km from the car.

https://docs.microsoft.com/stream-analytics-query/createpoint
https://docs.microsoft.com/stream-analytics-query/createpolygon

SELECT Cars.Location, Station.Location
FROM Cars c
JOIN Station s ON ST_DISTANCE(c.Location, s.Location) < 10 * 1000

ST_OVERLAPS

SELECT Building.Polygon, Building.Polygon
FROM Building b
JOIN Flooding f ON ST_OVERLAPS(b.Polygon, b.Polygon)

SELECT Cars.Location, Storm.Course
FROM Cars c, Storm s
JOIN Storm s ON ST_OVERLAPS(c.Location, s.Course)

ST_INTERSECTS

SELECT
 ST_INTERSECTS(input.pavedRoad, input.dirtRoad)
FROM input

Input exampleInput example

DATACENTERAREA STORMAREA

{"type":"LineString", "coordinates": [[-10.0, 0.0], [0.0, 0.0],
[10.0, 0.0]]}

{"type":"LineString", "coordinates": [[0.0, 10.0], [0.0, 0.0], [0.0, -
10.0]]}

{"type":"LineString", "coordinates": [[-10.0, 0.0], [0.0, 0.0],
[10.0, 0.0]]}

{"type":"LineString", "coordinates": [[-10.0, 10.0], [0.0, 10.0],
[10.0, 10.0]]}

Output exampleOutput example

ST_WITHIN

To learn more, visit the ST_DISTANCE reference.

The ST_OVERLAPS function compares two polygons. If the polygons overlap, the function returns a 1. The function
returns 0 if the polygons don't overlap.

The following query uses ST_OVERLAPS to generate an event when a building is within a possible flooding zone.

The following example query generates an event when a storm is heading towards a car.

To learn more, visit the ST_OVERLAPS reference.

The ST_INTERSECTS function compares two LineString. If the LineString intersect, then the function returns 1. The
function returns 0 if the LineString don't intersect.

The following example query uses ST_INTERSECTS to determine if a paved road intersects a dirt road.

1

0

To learn more, visit the ST_INTERSECTS reference.

https://docs.microsoft.com/stream-analytics-query/st-distance
https://docs.microsoft.com/stream-analytics-query/st-overlaps
https://docs.microsoft.com/stream-analytics-query/st-intersects

SELECT
 ST_WITHIN(input.deliveryDestination, input.warehouse)
FROM input

Input exampleInput example

DELIVERYDESTINATION WAREHOUSE

{"type":"Point", "coordinates": [76.6, 10.1]} {"type":"Polygon", "coordinates": [[0.0, 0.0], [10.0, 0.0], [10.0,
10.0], [0.0, 10.0], [0.0, 0.0]]}

{"type":"Point", "coordinates": [15.0, 15.0]} {"type":"Polygon", "coordinates": [[10.0, 10.0], [20.0, 10.0],
[20.0, 20.0], [10.0, 20.0], [10.0, 10.0]]}

Output exampleOutput example

Next steps

The ST_WITHIN function determines whether a point or polygon is within a polygon. If the polygon contains the
point or polygon, the function will return 1. The function will return 0 if the point or polygon isn't located within the
declared polygon.

The following example query uses ST_WITHIN to determine whether the delivery destination point is within the
given warehouse polygon.

0

1

To learn more, visit the ST_WITHIN reference.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/st-within
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Compatibility level for Azure Stream Analytics jobs
5 minutes to read • Edit Online

Choose a compatibility level

Set the compatibility level

This article describes the compatibility level option in Azure Stream Analytics. Stream Analytics is a managed
service, with regular feature updates, and performance improvements. Most of the service's runtimes updates are
automatically made available to end users.

However, some new functionality in the service may introduce a major change, such as a change in the behavior of
an existing job, or a change in the way data is consumed in running jobs. You can keep your existing Stream
Analytics jobs running without major changes by leaving the compatibility level setting lowered. When you are
ready for the latest runtime behaviors, you can opt-in by raising the compatibility level.

Compatibility level controls the runtime behavior of a stream analytics job.

Azure Stream Analytics currently supports three compatibility levels:

1.0 - Original compatibility level, introduced during general availability of Azure Stream Analytics several years
ago.
1.1 - Previous behavior
1.2 - Newest behavior with most recent improvements

When you create a new Stream Analytics job, it's a best practice to create it by using the latest compatibility level.
Start your job design relying upon the latest behaviors, to avoid added change and complexity later on.

You can set the compatibility level for a Stream Analytics job in the Azure portal or by using the create job REST
API call.

To update the compatibility level of the job in the Azure portal:

1. Use the Azure portal to locate to your Stream Analytics job.
2. Stop the job before updating the compatibility level. You can’t update the compatibility level if your job is in a

running state.
3. Under the Configure heading, select Compatibility level.
4. Choose the compatibility level value that you want.
5. Select Save at the bottom of the page.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-compatibility-level.md
https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-job
https://portal.azure.com

Compatibility level 1.2

AMQP messaging protocolAMQP messaging protocol

Geospatial functionsGeospatial functions

Parallel query execution for input sources with multiple partitionsParallel query execution for input sources with multiple partitions

Native Bulk API integration with CosmosDB outputNative Bulk API integration with CosmosDB output

When you update the compatibility level, the T-compiler validates the job with the syntax that corresponds to the
selected compatibility level.

The following major changes are introduced in compatibility level 1.2:

1.2 level: Azure Stream Analytics uses Advanced Message Queueing Protocol (AMQP) messaging protocol to
write to Service Bus Queues and Topics. AMQP enables you to build cross-platform, hybrid applications using an
open standard protocol.

Previous levels: Azure Stream Analytics used Geography calculations.

1.2 level: Azure Stream Analytics allows you to compute Geometric projected geo coordinates. There's no change
in the signature of the geospatial functions. However, their semantics is slightly different, allowing more precise
computation than before.

Azure Stream Analytics supports geospatial reference data indexing. Reference Data containing geospatial
elements can be indexed for a faster join computation.

The updated geospatial functions bring the full expressiveness of Well Known Text (WKT) geospatial format. You
can specify other geospatial components that weren't previously supported with GeoJson.

For more information, see Updates to geospatial features in Azure Stream Analytics – Cloud and IoT Edge.

Previous levels: Azure Stream Analytics queries required the use of PARTITION BY clause to parallelize query
processing across input source partitions.

1.2 level: If query logic can be parallelized across input source partitions, Azure Stream Analytics creates separate
query instances and runs computations in parallel.

Previous levels: The upsert behavior was insert or merge.

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-amqp-overview
https://azure.microsoft.com/blog/updates-to-geospatial-functions-in-azure-stream-analytics-cloud-and-iot-edge/

DateTimeOffset when writing to SQL outputDateTimeOffset when writing to SQL output

Long when writing to SQL outputLong when writing to SQL output

Record and array serialization when writing to SQL outputRecord and array serialization when writing to SQL output

Strict validation of prefix of functionsStrict validation of prefix of functions

Disallow Array and Object as key properties in Cosmos DB output adapterDisallow Array and Object as key properties in Cosmos DB output adapter

Compatibility level 1.1

Service Bus XML formatService Bus XML format

Persisting case-sensitivity for field namesPersisting case-sensitivity for field names

1.2 level: Native Bulk API integration with CosmosDB output maximizes throughput and efficiently handles
throttling requests. For more information, see the Azure Stream Analytics output to Azure Cosmos DB page.

The upsert behavior is insert or replace.

Previous levels: DateTimeOffset types were adjusted to UTC.

1.2 level: DateTimeOffset is no longer adjusted.

Previous levels: Values were truncated based on the target type.

1.2 level: Values that do not fit into the target type are handled according to the output error policy.

Previous levels: Records were written as "Record" and arrays were written as "Array".

1.2 level: Records and arrays are serialized in JSON format.

Previous levels: There was no strict validation of function prefixes.

1.2 level: Azure Stream Analytics has a strict validation of function prefixes. Adding a prefix to a built-in function
causes an error. For example, myprefix.ABS(…) isn't supported.

Adding a prefix to built-in aggregates also results in error. For example, myprefix.SUM(…) isn't supported.

Using the prefix "system" for any user-defined functions results in error.

Previous levels: Array and Object types were supported as a key property.

1.2 level: Array and Object types are no longer supported as a key property.

The following major changes are introduced in compatibility level 1.1:

1.0 level: Azure Stream Analytics used DataContractSerializer, so the message content included XML tags. For
example:

@\u0006string\b3http://schemas.microsoft.com/2003/10/Serialization/\u0001{ "SensorId":"1",
"Temperature":64\}\u0001

1.1 level: The message content contains the stream directly with no additional tags. For example:
{ "SensorId":"1", "Temperature":64}

1.0 level: Field names were changed to lower case when processed by the Azure Stream Analytics engine.

1.1 level: case-sensitivity is persisted for field names when they are processed by the Azure Stream Analytics
engine.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-documentdb-output#improved-throughput-with-compatibility-level-12
https://docs.microsoft.com/sql/t-sql/data-types/datetimeoffset-transact-sql?view=sql-server-2017

NOTENOTE

FloatNaNDeserializationDisabledFloatNaNDeserializationDisabled

Disable automatic upcast for datetime strings in JSONDisable automatic upcast for datetime strings in JSON

Next steps

Persisting case-sensitivity isn't yet available for Stream Analytic jobs hosted by using Edge environment. As a result, all field
names are converted to lowercase if your job is hosted on Edge.

1.0 level: CREATE TABLE command did not filter events with NaN (Not-a-Number. For example, Infinity, -Infinity)
in a FLOAT column type because they are out of the documented range for these numbers.

1.1 level: CREATE TABLE allows you to specify a strong schema. The Stream Analytics engine validates that the
data conforms to this schema. With this model, the command can filter events with NaN values.

1.0 level: The JSON parser would automatically upcast string values with date/time/zone information to
DateTime type and then convert it to UTC. This behavior resulted in losing the timezone information.

1.1 level: There is no more automatically upcast of string values with date/time/zone information to DateTime
type. As a result, timezone information is kept.

Troubleshoot Azure Stream Analytics inputs
Stream Analytics Resource health

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-resource-health

Common query patterns in Azure Stream Analytics
17 minutes to read • Edit Online

Supported Data Formats

Simple pass-through query

MAKE TIME WEIGHT

Make1 2015-01-01T00:00:01.0000000Z "1000"

Make1 2015-01-01T00:00:02.0000000Z "2000"

MAKE TIME WEIGHT

Make1 2015-01-01T00:00:01.0000000Z "1000"

Make1 2015-01-01T00:00:02.0000000Z "2000"

SELECT
 *
INTO Output
FROM Input

Queries in Azure Stream Analytics are expressed in a SQL-like query language. The language constructs are
documented in the Stream Analytics query language reference guide.

The query design can express simple pass-through logic to move event data from one input stream into an output
data store, or it can do rich pattern matching and temporal analysis to calculate aggregates over various time
windows as in the Build an IoT solution by using Stream Analytics guide. You can join data from multiple inputs to
combine streaming events, and you can do lookups against static reference data to enrich the event values. You can
also write data to multiple outputs.

This article outlines solutions to several common query patterns based on real-world scenarios.

Azure Stream Analytics supports processing events in CSV, JSON and Avro data formats.

Both JSON and Avro may contain complex types such as nested objects (records) or arrays. For more information
on working with these complex data types, refer to the Parsing JSON and AVRO data article.

A simple pass-through query can be used to copy the input stream data into the output. For example, if a stream of
data containing real-time vehicle information needs to be saved in a SQL database for letter analysis, a simple
pass-through query will do the job.

Input:

Output:

Query:

A SELECT * query projects all the fields of an incoming event and sends them to the output. The same way,

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-stream-analytics-query-patterns.md
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

MAKE TIME WEIGHT

Make1 2015-01-01T00:00:01.0000000Z 1000

Make1 2015-01-01T00:00:02.0000000Z 2000

Make2 2015-01-01T00:00:04.0000000Z 1500

MAKE TIME

Make1 2015-01-01T00:00:01.0000000Z

Make1 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:04.0000000Z

SELECT
 Make, Time
INTO Output
FROM Input

Data aggregation over time

MAKE TIME WEIGHT

Make1 2015-01-01T00:00:01.0000000Z 1000

Make1 2015-01-01T00:00:02.0000000Z 2000

Make2 2015-01-01T00:00:04.0000000Z 1500

MAKE COUNT

Make1 2

Make2 1

SELECT can also be used to only project required fields from the input. In this example, if vehicle Make and Time
are the only required fields to be saved, those fields can be specified in the SELECT statement.

Input:

Output:

Query:

To compute information over a time window, data can be aggregated together. In this example, a count is
computed over the last 10 minutes of time for every specific car make.

Input:

Output:

Query:

SELECT
 Make,
 COUNT(*) AS Count
FROM
 Input TIMESTAMP BY Time
GROUP BY
 Make,
 TumblingWindow(second, 10)

Data conversion

MAKE TIME WEIGHT

Make1 2015-01-01T00:00:01.0000000Z "1000"

Make1 2015-01-01T00:00:02.0000000Z "2000"

MAKE WEIGHT

Make1 3000

SELECT
 Make,
 SUM(CAST(Weight AS BIGINT)) AS Weight
FROM
 Input TIMESTAMP BY Time
GROUP BY
 Make,
 TumblingWindow(second, 10)

String matching with LIKE and NOT LIKE

This aggregation groups the cars by Make and counts them every 10 seconds. The output has the Make and Count
of cars that went through the toll.

TumblingWindow is a windowing function used to group events together. An aggregation can be applied over all
grouped events. For more information, see windowing functions.

For more information on aggregation, refer to aggregate functions.

Data can be cast in real-time using the CAST method. For example, car weight can be converted from type
nvarchar(max) to type bigint and be used on a numeric calculation.

Input:

Output:

Query:

Use a CAST statement to specify its data type. See the list of supported data types on Data types (Azure Stream
Analytics).

For more information on data conversion functions.

LIKE and NOT LIKE can be used to verify if a field matches a certain pattern. For example, a filter can be created
to return only the license plates that start with the letter 'A' and end with the number 9.

https://docs.microsoft.com/stream-analytics-query/aggregate-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/data-types-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/conversion-functions-azure-stream-analytics

MAKE LICENSE_PLATE TIME

Make1 ABC-123 2015-01-01T00:00:01.0000000Z

Make2 AAA-999 2015-01-01T00:00:02.0000000Z

Make3 ABC-369 2015-01-01T00:00:03.0000000Z

MAKE LICENSE_PLATE TIME

Make2 AAA-999 2015-01-01T00:00:02.0000000Z

Make3 ABC-369 2015-01-01T00:00:03.0000000Z

SELECT
 *
FROM
 Input TIMESTAMP BY Time
WHERE
 License_plate LIKE 'A%9'

Specify logic for different cases/values (CASE statements)

MAKE TIME

Make1 2015-01-01T00:00:01.0000000Z

Make2 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:03.0000000Z

MAKE DISPATCH_TO_LANE TIME

Make1 "A" 2015-01-01T00:00:01.0000000Z

Make2 "B" 2015-01-01T00:00:02.0000000Z

Input:

Output:

Query:

Use the LIKE statement to check the License_plate field value. It should start with the letter 'A', then have any
string of zero or more characters, ending with the number 9.

CASE statements can provide different computations for different fields, based on particular criterion. For
example, assign lane 'A' to cars of Make1 and lane 'B' to any other make.

Input:

Output:

Solution:

SELECT
 Make
 CASE
 WHEN Make = "Make1" THEN "A"
 ELSE "B"
 END AS Dispatch_to_lane,
 System.TimeStamp() AS Time
FROM
 Input TIMESTAMP BY Time

Send data to multiple outputs

MAKE TIME

Make1 2015-01-01T00:00:01.0000000Z

Make1 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:01.0000000Z

Make2 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:03.0000000Z

MAKE TIME

Make1 2015-01-01T00:00:01.0000000Z

Make1 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:01.0000000Z

Make2 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:03.0000000Z

MAKE TIME COUNT

Make2 2015-01-01T00:00:10.0000000Z 3

The CASE expression compares an expression to a set of simple expressions to determine its result. In this
example, vehicles of Make1 are dispatched to lane 'A' while vehicles of any other make will be assigned lane 'B'.

For more information, refer to case expression.

Multiple SELECT statements can be used to output data to different output sinks. For example, one SELECT can
output a threshold-based alert while another one can output events to blob storage.

Input:

Output ArchiveOutput:

Output AlertOutput:

Query:

https://docs.microsoft.com/stream-analytics-query/case-azure-stream-analytics

SELECT
 *
INTO
 ArchiveOutput
FROM
 Input TIMESTAMP BY Time

SELECT
 Make,
 System.TimeStamp() AS Time,
 COUNT(*) AS [Count]
INTO
 AlertOutput
FROM
 Input TIMESTAMP BY Time
GROUP BY
 Make,
 TumblingWindow(second, 10)
HAVING
 [Count] >= 3

WITH ReaderQuery AS (
 SELECT
 *
 FROM
 Input TIMESTAMP BY Time
)

SELECT * INTO ArchiveOutput FROM ReaderQuery

SELECT
 Make,
 System.TimeStamp() AS Time,
 COUNT(*) AS [Count]
INTO AlertOutput
FROM ReaderQuery
GROUP BY
 Make,
 TumblingWindow(second, 10)
HAVING [Count] >= 3

Count unique values

The INTO clause tells Stream Analytics which of the outputs to write the data to. The first SELECT defines a pass-
through query that receives data from the input and sends it to the output named ArchiveOutput. The second
query does some simple aggregation and filtering before sending the results to a downstream alerting system
output called AlertOutput.

Note that the WITH clause can be used to define multiple sub-query blocks. This option has the benefit of
opening fewer readers to the input source.

Query:

For more information, refer to WITH clause.

COUNT and DISTINCT can be used to count the number of unique field values that appear in the stream within
a time window. A query can be created to calculate how many unique Makes of cars passed through the toll booth
in a 2-second window.

Input:

https://docs.microsoft.com/stream-analytics-query/with-azure-stream-analytics

MAKE TIME

Make1 2015-01-01T00:00:01.0000000Z

Make1 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:01.0000000Z

Make2 2015-01-01T00:00:02.0000000Z

Make2 2015-01-01T00:00:03.0000000Z

COUNT_MAKE TIME

2 2015-01-01T00:00:02.000Z

1 2015-01-01T00:00:04.000Z

SELECT
 COUNT(DISTINCT Make) AS Count_make,
 System.TIMESTAMP() AS Time
FROM Input TIMESTAMP BY TIME
GROUP BY
 TumblingWindow(second, 2)

Calculation over past events

MAKE TIME

Make1 2015-01-01T00:00:01.0000000Z

Make2 2015-01-01T00:00:02.0000000Z

MAKE TIME

Make2 2015-01-01T00:00:02.0000000Z

Output:

Query:

COUNT(DISTINCT Make) returns the count of distinct values in the Make column within a time window. For
more information, refer to COUNT aggregate function.

The LAG function can be used to look at past events within a time window and compare them against the current
event. For example, the current car make can be outputted if it is different from the last car that went through the
toll.

Input:

Output:

Query:

https://docs.microsoft.com/stream-analytics-query/count-azure-stream-analytics

SELECT
 Make,
 Time
FROM
 Input TIMESTAMP BY Time
WHERE
 LAG(Make, 1) OVER (LIMIT DURATION(minute, 1)) <> Make

Retrieve the first event in a window

LICENSE_PLATE MAKE TIME

DXE 5291 Make1 2015-07-27T00:00:05.0000000Z

YZK 5704 Make3 2015-07-27T00:02:17.0000000Z

RMV 8282 Make1 2015-07-27T00:05:01.0000000Z

YHN 6970 Make2 2015-07-27T00:06:00.0000000Z

VFE 1616 Make2 2015-07-27T00:09:31.0000000Z

QYF 9358 Make1 2015-07-27T00:12:02.0000000Z

MDR 6128 Make4 2015-07-27T00:13:45.0000000Z

LICENSE_PLATE MAKE TIME

DXE 5291 Make1 2015-07-27T00:00:05.0000000Z

QYF 9358 Make1 2015-07-27T00:12:02.0000000Z

SELECT
 License_plate,
 Make,
 Time
FROM
 Input TIMESTAMP BY Time
WHERE
 IsFirst(minute, 10) = 1

Use LAG to peek into the input stream one event back, retrieving the Make value and comparing it to the Make
value of the current event and output the event.

For more information, refer to LAG.

IsFirst can be used to retrieve the first event in a time window. For example, outputting the first car information at
every 10-minute interval.

Input:

Output:

Query:

IsFirst can also partition the data and calculate the first event to each specific car Make found at every 10-minute

https://docs.microsoft.com/stream-analytics-query/lag-azure-stream-analytics

LICENSE_PLATE MAKE TIME

DXE 5291 Make1 2015-07-27T00:00:05.0000000Z

YZK 5704 Make3 2015-07-27T00:02:17.0000000Z

YHN 6970 Make2 2015-07-27T00:06:00.0000000Z

QYF 9358 Make1 2015-07-27T00:12:02.0000000Z

MDR 6128 Make4 2015-07-27T00:13:45.0000000Z

SELECT
 License_plate,
 Make,
 Time
FROM
 Input TIMESTAMP BY Time
WHERE
 IsFirst(minute, 10) OVER (PARTITION BY Make) = 1

Return the last event in a window

LICENSE_PLATE MAKE TIME

DXE 5291 Make1 2015-07-27T00:00:05.0000000Z

YZK 5704 Make3 2015-07-27T00:02:17.0000000Z

RMV 8282 Make1 2015-07-27T00:05:01.0000000Z

YHN 6970 Make2 2015-07-27T00:06:00.0000000Z

VFE 1616 Make2 2015-07-27T00:09:31.0000000Z

QYF 9358 Make1 2015-07-27T00:12:02.0000000Z

MDR 6128 Make4 2015-07-27T00:13:45.0000000Z

interval.

Output:

Query:

For more information, refer to IsFirst.

As events are consumed by the system in real-time, there is no function that can determine if an event will be the
last one to arrive for that window of time. To achieve this, the input stream needs to be joined with another where
the time of an event is the maximum time for all events at that window.

Input:

Output:

https://docs.microsoft.com/stream-analytics-query/isfirst-azure-stream-analytics

LICENSE_PLATE MAKE TIME

VFE 1616 Make2 2015-07-27T00:09:31.0000000Z

MDR 6128 Make4 2015-07-27T00:13:45.0000000Z

WITH LastInWindow AS
(
 SELECT
 MAX(Time) AS LastEventTime
 FROM
 Input TIMESTAMP BY Time
 GROUP BY
 TumblingWindow(minute, 10)
)

SELECT
 Input.License_plate,
 Input.Make,
 Input.Time
FROM
 Input TIMESTAMP BY Time
 INNER JOIN LastInWindow
 ON DATEDIFF(minute, Input, LastInWindow) BETWEEN 0 AND 10
 AND Input.Time = LastInWindow.LastEventTime

Correlate events in a stream

MAKE LICENSE_PLATE TIME

Make1 ABC-123 2015-01-01T00:00:01.0000000Z

Make1 AAA-999 2015-01-01T00:00:02.0000000Z

Make2 DEF-987 2015-01-01T00:00:03.0000000Z

Make1 GHI-345 2015-01-01T00:00:04.0000000Z

Query:

The first step on the query finds the maximum time stamp in 10-minute windows, that is the time stamp of the last
event for that window. The second step joins the results of the first query with the original stream to find the event
that match the last time stamps in each window.

DATEDIFF is a date-specific function that compares and returns the time difference between two DateTime fields,
for more information, refer to date functions.

For more information on joining streams, refer to JOIN .

Correlating events in the same stream can be done by looking at past events using the LAG function. For example,
an output can be generated every time two consecutive cars from the same Make go through the toll for the last
90 seconds.

Input:

Output:

https://docs.microsoft.com/stream-analytics-query/date-and-time-functions-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics

MAKE TIME
CURRENT_CAR_LICENSE
_PLATE

FIRST_CAR_LICENSE_PLA
TE FIRST_CAR_TIME

Make1 2015-01-
01T00:00:02.0000000
Z

AAA-999 ABC-123 2015-01-
01T00:00:01.0000000
Z

SELECT
 Make,
 Time,
 License_plate AS Current_car_license_plate,
 LAG(License_plate, 1) OVER (LIMIT DURATION(second, 90)) AS First_car_license_plate,
 LAG(Time, 1) OVER (LIMIT DURATION(second, 90)) AS First_car_time
FROM
 Input TIMESTAMP BY Time
WHERE
 LAG(Make, 1) OVER (LIMIT DURATION(second, 90)) = Make

Detect the duration between events

USER FEATURE EVENT TIME

user@location.com RightMenu Start 2015-01-
01T00:00:01.0000000Z

user@location.com RightMenu End 2015-01-
01T00:00:08.0000000Z

USER FEATURE DURATION

user@location.com RightMenu 7

Query:

The LAG function can look into the input stream one event back and retrieve the Make value, comparing that with
the Make value of the current event. Once the condition is met, data from the previous event can be projected
using LAG in the SELECT statement.

For more information, refer to LAG.

The duration of an event can be computed by looking at the last Start event once an End event is received. This
query can be useful to determine the time a user spends on a page or a feature.

Input:

Output:

Query:

https://docs.microsoft.com/stream-analytics-query/lag-azure-stream-analytics

SELECT
 [user],
 feature,
 DATEDIFF(
 second,
 LAST(Time) OVER (PARTITION BY [user], feature LIMIT DURATION(hour, 1) WHEN Event = 'start'),
 Time) as duration
FROM input TIMESTAMP BY Time
WHERE
 Event = 'end'

Detect the duration of a condition

MAKE TIME WEIGHT

Make1 2015-01-01T00:00:01.0000000Z 2000

Make2 2015-01-01T00:00:02.0000000Z 25000

Make1 2015-01-01T00:00:03.0000000Z 26000

Make2 2015-01-01T00:00:04.0000000Z 25000

Make1 2015-01-01T00:00:05.0000000Z 26000

Make2 2015-01-01T00:00:06.0000000Z 25000

Make1 2015-01-01T00:00:07.0000000Z 26000

Make2 2015-01-01T00:00:08.0000000Z 2000

START_FAULT END_FAULT

2015-01-01T00:00:02.000Z 2015-01-01T00:00:07.000Z

The LAST function can be used to retrieve the last event within a specific condition. In this example, the condition
is an event of type Start, partitioning the search by PARTITION BY user and feature. This way, every user and
feature is treated independently when searching for the Start event. LIMIT DURATION limits the search back in
time to 1 hour between the End and Start events.

For conditions that span through multiple events the LAG function can be used to identify the duration of that
condition. For example, suppose that a bug resulted in all cars having an incorrect weight (above 20,000 pounds),
and the duration of that bug must be computed.

Input:

Output:

Query:

WITH SelectPreviousEvent AS
(
SELECT
 *,
 LAG([time]) OVER (LIMIT DURATION(hour, 24)) as previous_time,
 LAG([weight]) OVER (LIMIT DURATION(hour, 24)) as previous_weight
FROM input TIMESTAMP BY [time]
)

SELECT
 LAG(time) OVER (LIMIT DURATION(hour, 24) WHEN previous_weight < 20000) [Start_fault],
 previous_time [End_fault]
FROM SelectPreviousEvent
WHERE
 [weight] < 20000
 AND previous_weight > 20000

Periodically output values

TIME VALUE

"2014-01-01T06:01:00" 1

"2014-01-01T06:01:05" 2

"2014-01-01T06:01:10" 3

"2014-01-01T06:01:15" 4

"2014-01-01T06:01:30" 5

"2014-01-01T06:01:35" 6

WINDOW_END LAST_EVENT.TIME LAST_EVENT.VALUE

2014-01-01T14:01:00.000Z 2014-01-01T14:01:00.000Z 1

2014-01-01T14:01:05.000Z 2014-01-01T14:01:05.000Z 2

2014-01-01T14:01:10.000Z 2014-01-01T14:01:10.000Z 3

The first SELECT statement correlates the current weight measurement with the previous measurement,
projecting it together with the current measurement. The second SELECT looks back to the last event where the
previous_weight is less than 20000, where the current weight is smaller than 20000 and the previous_weight of the
current event was bigger than 20000.

The End_fault is the current non-faulty event where the previous event was faulty, and the Start_fault is the last
non-faulty event before that.

In case of irregular or missing events, a regular interval output can be generated from a more sparse data input.
For example, generate an event every 5 seconds that reports the most recently seen data point.

Input:

Output (first 10 rows):

2014-01-01T14:01:15.000Z 2014-01-01T14:01:15.000Z 4

2014-01-01T14:01:20.000Z 2014-01-01T14:01:15.000Z 4

2014-01-01T14:01:25.000Z 2014-01-01T14:01:15.000Z 4

2014-01-01T14:01:30.000Z 2014-01-01T14:01:30.000Z 5

2014-01-01T14:01:35.000Z 2014-01-01T14:01:35.000Z 6

2014-01-01T14:01:40.000Z 2014-01-01T14:01:35.000Z 6

2014-01-01T14:01:45.000Z 2014-01-01T14:01:35.000Z 6

WINDOW_END LAST_EVENT.TIME LAST_EVENT.VALUE

SELECT
 System.Timestamp() AS Window_end,
 TopOne() OVER (ORDER BY Time DESC) AS Last_event
FROM
 Input TIMESTAMP BY Time
GROUP BY
 HOPPINGWINDOW(second, 300, 5)

Process events with independent time (Substreams)

LICENSEPLATE MAKE TIME TOLLID

DXE 5291 Make1 2015-07-
27T00:00:01.0000000Z

1

YHN 6970 Make2 2015-07-
27T00:00:05.0000000Z

1

QYF 9358 Make1 2015-07-
27T00:00:01.0000000Z

2

GXF 9462 Make3 2015-07-
27T00:00:04.0000000Z

2

Query:

This query generates events every 5 seconds and outputs the last event that was received previously. The
HOPPINGWINDOW duration determines how far back the query looks to find the latest event.

For more information, refer to Hopping window.

Events can arrive late or out of order due to clock skews between event producers, clock skews between partitions,
or network latency. For example, the device clock for TollID 2 is five seconds behind TollID 1, and the device clock
for TollID 3 is ten seconds behind TollID 1. A computation can happen independently for each toll, considering only
its own clock data as a timestamp.

Input:

https://docs.microsoft.com/stream-analytics-query/hopping-window-azure-stream-analytics

VFE 1616 Make2 2015-07-
27T00:00:10.0000000Z

1

RMV 8282 Make1 2015-07-
27T00:00:03.0000000Z

3

MDR 6128 Make3 2015-07-
27T00:00:11.0000000Z

2

YZK 5704 Make4 2015-07-
27T00:00:07.0000000Z

3

LICENSEPLATE MAKE TIME TOLLID

TOLLID COUNT

1 2

2 2

1 1

3 1

2 1

3 1

SELECT
 TollId,
 COUNT(*) AS Count
FROM input
 TIMESTAMP BY Time OVER TollId
GROUP BY TUMBLINGWINDOW(second, 5), TollId

Remove duplicate events in a window

DEVICEID TIME ATTRIBUTE VALUE

Output:

Query:

The TIMESTAMP OVER BY clause looks at each device timeline independently using substreams. The output
event for each TollID is generated as they are computed, meaning that the events are in order with respect to each
TollID instead of being reordered as if all devices were on the same clock.

For more information, refer to TIMESTAMP BY OVER.

When performing an operation such as calculating averages over events in a given time window, duplicate events
should be filtered. In the following example, the second event is a duplicate of the first.

Input:

https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics#over-clause-interacts-with-event-ordering

1 2018-07-
27T00:00:01.0000000Z

Temperature 50

1 2018-07-
27T00:00:01.0000000Z

Temperature 50

2 2018-07-
27T00:00:01.0000000Z

Temperature 40

1 2018-07-
27T00:00:05.0000000Z

Temperature 60

2 2018-07-
27T00:00:05.0000000Z

Temperature 50

1 2018-07-
27T00:00:10.0000000Z

Temperature 100

DEVICEID TIME ATTRIBUTE VALUE

AVERAGEVALUE DEVICEID

70 1

45 2

With Temp AS (
SELECT
 COUNT(DISTINCT Time) AS CountTime,
 Value,
 DeviceId
FROM
 Input TIMESTAMP BY Time
GROUP BY
 Value,
 DeviceId,
 SYSTEM.TIMESTAMP()
)

SELECT
 AVG(Value) AS AverageValue, DeviceId
INTO Output
FROM Temp
GROUP BY DeviceId,TumblingWindow(minute, 5)

Session Windows

Output:

Query:

COUNT(DISTINCT Time) returns the number of distinct values in the Time column within a time window. The
output of the first step can then be used to compute the average per device, by discarding duplicates.

For more information, refer to COUNT(DISTINCT Time).

A Session Window is a window that keeps expanding as events occur and closes for computation if no event is
received after a specific amount of time or if the window reaches its maximum duration. This window is

https://docs.microsoft.com/stream-analytics-query/count-azure-stream-analytics

USER_ID TIME URL

0 2017-01-26T00:00:00.0000000Z "www.example.com/a.html"

0 2017-01-26T00:00:20.0000000Z "www.example.com/b.html"

1 2017-01-26T00:00:55.0000000Z "www.example.com/c.html"

0 2017-01-26T00:01:10.0000000Z "www.example.com/d.html"

1 2017-01-26T00:01:15.0000000Z "www.example.com/e.html"

USER_ID STARTTIME ENDTIME DURATION_IN_SECONDS

0 2017-01-
26T00:00:00.0000000Z

2017-01-
26T00:01:10.0000000Z

70

1 2017-01-
26T00:00:55.0000000Z

2017-01-
26T00:01:15.0000000Z

20

SELECT
 user_id,
 MIN(time) as StartTime,
 MAX(time) as EndTime,
 DATEDIFF(second, MIN(time), MAX(time)) AS duration_in_seconds
FROM input TIMESTAMP BY time
GROUP BY
 user_id,
 SessionWindow(minute, 1, 60) OVER (PARTITION BY user_id)

Language extensibility with User Defined Function in JavaScript and C#

particularly useful when computing user interaction data. A window starts when a user starts interacting with the
system and closes when no more events are observed, meaning, the user has stopped interacting. For example, a
user is interacting with a web page where the number of clicks is logged, a Session Window can be used to find
out how long the user interacted with the site.

Input:

Output:

Query:

The SELECT projects the data relevant to the user interaction, together with the duration of the interaction.
Grouping the data by user and a SessionWindow that closes if no interaction happens within 1 minute, with a
maximum window size of 60 minutes.

For more information on SessionWindow, refer to Session Window .

Azure Stream Analytics query language can be extended with custom functions written either in JavaScript or C#
language. User Defined Functions (UDF) are custom/complex computations that cannot be easily expressed using
the SQL language. These UDFs can be defined once and used multiple times within a query. For example, an UDF
can be used to convert a hexadecimal nvarchar(max) value to an bigint value.

Input:

https://docs.microsoft.com/stream-analytics-query/session-window-azure-stream-analytics

DEVICE_ID HEXVALUE

1 "B4"

2 "11B"

3 "121"

DEVICE_ID DECIMAL

1 180

2 283

3 289

function hex2Int(hexValue){
 return parseInt(hexValue, 16);
}

public static class MyUdfClass {
 public static long Hex2Int(string hexValue){
 return int.Parse(hexValue, System.Globalization.NumberStyles.HexNumber);
 }
}

SELECT
 Device_id,
 udf.Hex2Int(HexValue) AS Decimal
From
 Input

Advanced pattern matching with MATCH_RECOGNIZE

ATM_ID OPERATION_ID RETURN_CODE TIME

1 "Entering Pin" "Success" 2017-01-
26T00:10:00.0000000Z

Output:

The User Defined Function will compute the bigint value from the HexValue on every event consumed.

For more information, refer to JavaScript and C#.

MATCH_RECOGNIZE is an advanced pattern matching mechanism that can be used to match a sequence of
events to a well-defined regular expression pattern. For example, an ATM is being monitored at real time for
failures, during the operation of the ATM if there are two consecutive warning messages the administrator needs
to be notified.

Input:

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-javascript-user-defined-functions
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-edge-csharp-udf

2 "Opening Money Slot" "Success" 2017-01-
26T00:10:07.0000000Z

2 "Closing Money Slot" "Success" 2017-01-
26T00:10:11.0000000Z

1 "Entering Withdraw
Quantity"

"Success" 2017-01-
26T00:10:08.0000000Z

1 "Opening Money Slot" "Warning" 2017-01-
26T00:10:14.0000000Z

1 "Printing Bank Balance" "Warning" 2017-01-
26T00:10:19.0000000Z

ATM_ID OPERATION_ID RETURN_CODE TIME

ATM_ID FIRST_WARNING_OPERATION_ID WARNING_TIME

1 "Opening Money Slot" 2017-01-26T00:10:14.0000000Z

SELECT *
FROM intput TIMESTAMP BY time OVER ATM_id
MATCH_RECOGNIZE (
 PARTITON BY ATM_id
 LIMIT DURATION(minute, 1)
 MEASURES
 First(Warning.ATM_id) AS ATM_id,
 First(Warning.Operation_Id) AS First_Warning_Operation_id,
 First(Warning.Time) AS Warning_Time
 AFTER MATCH SKIP TO NEXT ROW
 PATTERN (Success* Warning{2,})
 DEFINE
 Success AS Succes.Return_Code = 'Success',
 Failure AS Warning.Return_Code <> 'Success'
) AS patternMatch

Geofencing and geospatial queries

Output:

This query matches at least two consecutive failure events and generate an alarm when the conditions are met.
PATTERN defines the regular expression to be used on the matching, in this case, any number of successful
operations followed by at least two consecutive failures. Success and Failure are defined using Return_Code value
and once the condition is met, the MEASURES are projected with ATM_id, the first warning operation and first
warning time.

For more information, refer to MATCH_RECOGNIZE.

Azure Stream Analytics provides built-in geospatial functions that can be used to implement scenarios such as
fleet management, ride sharing, connected cars, and asset tracking. Geospatial data can be ingested in either
GeoJSON or WKT formats as part of event stream or reference data. For example, a company that is specialized in
manufacturing machines for printing passports, lease their machines to governments and consulates. The location
of those machines is heavily controlled as to avoid the misplacing and possible use for counterfeiting of passports.
Each machine is fitted with a GPS tracker, that information is relayed back to an Azure Stream Analytics job. The
manufacture would like to keep track of the location of those machines and be alerted if one of them leaves an

https://docs.microsoft.com/stream-analytics-query/match-recognize-stream-analytics

EQUIPMENT_ID EQUIPMENT_CURRENT_LOCATION TIME

1 "POINT(-122.13288797982818
47.64082002051315)"

2017-01-26T00:10:00.0000000Z

1 "POINT(-122.13307252987875
47.64081350934929)"

2017-01-26T00:11:00.0000000Z

1 "POINT(-122.13308862313283
47.6406508603241)"

2017-01-26T00:12:00.0000000Z

1 "POINT(-122.13341048821462
47.64043760861279)"

2017-01-26T00:13:00.0000000Z

EQUIPMENT_ID EQUIPMENT_LEASE_LOCATION

1 "POLYGON((-122.13326028450979 47.6409833866794,-
122.13261655434621 47.6409833866794,-
122.13261655434621 47.64061471602751,-
122.13326028450979 47.64061471602751,-
122.13326028450979 47.6409833866794))"

EQUIPMENT_ID EQUIPMENT_ALERT_LOCATION TIME

1 "POINT(-122.13341048821462
47.64043760861279)"

2017-01-26T00:13:00.0000000Z

SELECT
 input.Equipment_id AS Equipment_id,
 input.Equipment_current_location AS Equipment_current_location,
 input.Time AS Time
FROM input TIMESTAMP BY time
JOIN
 referenceInput
 ON input.Equipment_id = referenceInput.Equipment_id
 WHERE
 ST_WITHIN(input.Equipment_currenct_location, referenceInput.Equipment_lease_location) = 1

Get help

authorized area, this way they can remotely disable, alert authorities and retrieve the equipment.

Input:

Reference Data Input:

Output:

The query enables the manufacturer to monitor the machines location automatically, getting alerts when a
machine leaves the allowed geofence. The built-in geospatial function allows users to use GPS data within the
query without third-party libraries.

For more information, refer to the Geofencing and geospatial aggregation scenarios with Azure Stream Analytics
article.

For further assistance, try our Azure Stream Analytics forum.

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Next steps
Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Parse JSON and Avro data in Azure Stream Analytics
5 minutes to read • Edit Online

NOTENOTE

Record data types

{
 "DeviceId" : "12345",
 "Location" :
 {
 "Lat": 47,
 "Long": 122
 },
 "SensorReadings" :
 {
 "Temperature" : 80,
 "Humidity" : 70,
 "CustomSensor01" : 5,
 "CustomSensor02" : 99,
 "SensorMetadata" :
 {
 "Manufacturer":"ABC",
 "Version":"1.2.45"
 }
 }
}

Access nested fields in known schemaAccess nested fields in known schema

SELECT
 DeviceID,
 Location.Lat,
 Location.Long,
 SensorReadings.Temperature,
 SensorReadings.SensorMetadata.Version
FROM input

Azure Stream Analytics support processing events in CSV, JSON, and Avro data formats. Both JSON and Avro
data can be structured and contain some complex types such as nested objects (records) and arrays.

AVRO files created by Event Hub Capture use a specific format that requires you to use the custom deserializer feature. For
more information, see Read input in any format using .NET custom deserializers.

Record data types are used to represent JSON and Avro arrays when corresponding formats are used in the input
data streams. These examples demonstrate a sample sensor, which is reading input events in JSON format. Here is
example of a single event:

Use dot notation (.) to easily access nested fields directly from your query. For example, this query selects the
Latitude and Longitude coordinates under the Location property in the preceding JSON data. The dot notation can
be used to navigate multiple levels as shown below.

The result is:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-parsing-json.md
https://docs.microsoft.com/azure/stream-analytics/custom-deserializer-examples

DEVICEID LAT LONG TEMPERATURE VERSION

12345 47 122 80 1.2.45

Select all propertiesSelect all properties

SELECT
 DeviceID,
 Location.*
FROM input

DEVICEID LAT LONG

12345 47 122

Access nested fields when property name is a variableAccess nested fields when property name is a variable

{
 "DeviceId" : "12345",
 "SensorName" : "Temperature",
 "Value" : 85
},
{
 "DeviceId" : "12345",
 "SensorName" : "Humidity",
 "Value" : 65
}

SELECT
 input.DeviceID,
 thresholds.SensorName,
 "Alert : Sensor above threshold" AS AlertMessage
FROM input -- stream input
JOIN thresholds -- reference data input
ON
 input.DeviceId = thresholds.DeviceId
WHERE
 GetRecordPropertyValue(input.SensorReadings, thresholds.SensorName) > thresholds.Value

You can select all the properties of a nested record using '*' wildcard. Consider the following example:

The result is:

Use the GetRecordPropertyValue function if the property name is a variable. This allows for building dynamic
queries without hardcoding property names.

For example, imagine the sample data stream needs to be joined with reference data containing thresholds for
each device sensor. A snippet of such reference data is shown below.

The goal here is to join our sample dataset from the top of the article to that reference data, and output one event
for each sensor measure above its threshold. That means our single event above can generate multiple output
events if multiple sensors are above their respective thresholds, thanks to the join. To achieve similar results without
a join, see the section below.

GetRecordPropertyValue selects the property in SensorReadings, which name matches the property name
coming from the reference data. Then the associated value from SensorReadings is extracted.

The result is:

https://docs.microsoft.com/stream-analytics-query/getrecordpropertyvalue-azure-stream-analytics

DEVICEID SENSORNAME ALERTMESSAGE

12345 Humidity Alert : Sensor above threshold

Convert record fields into separate eventsConvert record fields into separate events

SELECT
 event.DeviceID,
 sensorReading.PropertyName,
 sensorReading.PropertyValue
FROM input as event
CROSS APPLY GetRecordProperties(event.SensorReadings) AS sensorReading

DEVICEID SENSORNAME ALERTMESSAGE

12345 Temperature 80

12345 Humidity 70

12345 CustomSensor01 5

12345 CustomSensor02 99

12345 SensorMetadata [object Object]

WITH Stage0 AS
(
 SELECT
 event.DeviceID,
 sensorReading.PropertyName,
 sensorReading.PropertyValue
 FROM input as event
 CROSS APPLY GetRecordProperties(event.SensorReadings) AS sensorReading
)

SELECT DeviceID, PropertyValue AS Temperature INTO TemperatureOutput FROM Stage0 WHERE PropertyName =
'Temperature'
SELECT DeviceID, PropertyValue AS Humidity INTO HumidityOutput FROM Stage0 WHERE PropertyName = 'Humidity'

Parse JSON record in SQL reference dataParse JSON record in SQL reference data

DEVICEID DATA

12345 {"key" : "value1"}

To convert record fields into separate events, use the APPLY operator together with the GetRecordProperties
function.

With the original sample data, the following query could be used to extract properties into different events.

The result is:

Using WITH, it's then possible to route those events to different destinations:

When using Azure SQL Database as reference data in your job, it's possible to have a column that has data in
JSON format. An example is shown below.

https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getrecordproperties-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/with-azure-stream-analytics

54321 {"key" : "value2"}

DEVICEID DATA

function parseJson(string) {
return JSON.parse(string);
}

WITH parseJson as
(
SELECT DeviceID, udf.parseJson(sqlRefInput.Data) as metadata,
FROM sqlRefInput
)

SELECT metadata.key
INTO output
FROM streamInput
JOIN parseJson
ON streamInput.DeviceID = parseJson.DeviceID

Array data types

{
 "DeviceId" : "12345",
 "SensorReadings" :
 {
 "Temperature" : 80,
 "Humidity" : 70,
 "CustomSensor01" : 5,
 "CustomSensor02" : 99,
 "CustomSensor03": [12,-5,0]
 },
 "SensorMetadata":[
 {
 "smKey":"Manufacturer",
 "smValue":"ABC"
 },
 {
 "smKey":"Version",
 "smValue":"1.2.45"
 }
]
}

Working with a specific array elementWorking with a specific array element

You can parse the JSON record in the Data column by writing a simple JavaScript user-defined function.

You can then create a step in your Stream Analytics query as shown below to access the fields of your JSON
records.

Array data types are an ordered collection of values. Some typical operations on array values are detailed below.
These examples use the functions GetArrayElement, GetArrayElements, GetArrayLength, and the APPLY operator.

Here is an example of a single event. Both CustomSensor03 and SensorMetadata are of type array:

Select array element at a specified index (selecting the first array element):

https://docs.microsoft.com/stream-analytics-query/getarrayelement-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarrayelements-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarraylength-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics

SELECT
 GetArrayElement(SensorReadings.CustomSensor03, 0) AS firstElement
FROM input

FIRSTELEMENT

12

Select array lengthSelect array length

SELECT
 GetArrayLength(SensorReadings.CustomSensor03) AS arrayLength
FROM input

ARRAYLENGTH

3

Convert array elements into separate eventsConvert array elements into separate events

SELECT
 DeviceId,
 CustomSensor03Record.ArrayIndex,
 CustomSensor03Record.ArrayValue
FROM input
CROSS APPLY GetArrayElements(SensorReadings.CustomSensor03) AS CustomSensor03Record

DEVICEID ARRAYINDEX ARRAYVALUE

12345 0 12

12345 1 -5

12345 2 0

SELECT
 i.DeviceId,
 SensorMetadataRecords.ArrayValue.smKey as smKey,
 SensorMetadataRecords.ArrayValue.smValue as smValue
FROM input i
CROSS APPLY GetArrayElements(SensorMetadata) AS SensorMetadataRecords

The result is:

The result is:

Select all array element as individual events. The APPLY operator together with the GetArrayElements built-in
function extracts all array elements as individual events:

The result is:

The result is:

https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarrayelements-azure-stream-analytics

DEVICEID SMKEY SMVALUE

12345 Manufacturer ABC

12345 Version 1.2.45

WITH DynamicCTE AS (
 SELECT
 i.DeviceId,
 SensorMetadataRecords.ArrayValue.smKey as smKey,
 SensorMetadataRecords.ArrayValue.smValue as smValue
 FROM input i
 CROSS APPLY GetArrayElements(SensorMetadata) AS SensorMetadataRecords
)

SELECT
 i.DeviceId,
 i.Location.*,
 V.smValue AS 'smVersion',
 M.smValue AS 'smManufacturer'
FROM input i
LEFT JOIN DynamicCTE V ON V.smKey = 'Version' and V.DeviceId = i.DeviceId AND DATEDIFF(minute,i,V) BETWEEN 0
AND 0
LEFT JOIN DynamicCTE M ON M.smKey = 'Manufacturer' and M.DeviceId = i.DeviceId AND DATEDIFF(minute,i,M) BETWEEN
0 AND 0

DEVICEID LAT LONG SMVERSION SMMANUFACTURER

12345 47 122 1.2.45 ABC

See Also

If the extracted fields need to appear in columns, it is possible to pivot the dataset using the WITH syntax in
addition to the JOIN operation. That join will require a time boundary condition that prevents duplication:

The result is:

Data Types in Azure Stream Analytics

https://docs.microsoft.com/stream-analytics-query/with-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics#bkmk_datediff
https://docs.microsoft.com/stream-analytics-query/data-types-azure-stream-analytics

Understand time handling in Azure Stream Analytics
14 minutes to read • Edit Online

Background time concepts

Choosing the best starting time

How time progresses in Azure Stream Analytics

In this article, we discuss how you can make design choices to solve practical time handling problems in the Azure
Stream Analytics service. Time handling design decisions are closely related to event ordering factors.

To better frame the discussion, let's define some background concepts:

Event time: The time when the original event happened. For example, when a moving car on the highway
approaches a toll booth.

Processing time: The time when the event reaches the processing system and is observed. For example,
when a toll booth sensor sees the car and the computer system takes a few moments to process the data.

Watermark: An event time marker that indicates up to what point events have been ingressed to the
streaming processor. Watermarks let the system indicate clear progress on ingesting the events. By the
nature of streams, the incoming event data never stops, so watermarks indicate the progress to a certain
point in the stream.

The watermark concept is important. Watermarks allow Stream Analytics to determine when the system
can produce complete, correct, and repeatable results that don’t need to be retracted. The processing can be
done in a guaranteed way that's predictable and repeatable. For example, if a recount needs to be done for
some error handling condition, watermarks are safe starting and ending points.

As additional resources on this subject, see Tyler Akidau's blog posts Streaming 101 and Streaming 102.

Stream Analytics gives users two choices for picking event time:

1. Arrival time

Arrival time is assigned at the input source when the event reaches the source. You can access arrival time
by using the EventEnqueuedUtcTime property for Event Hubs inputs, IoTHub.EnqueuedTime
property for IoT Hub, and using the BlobProperties.LastModified property for blob input.

Using arrival time is the default behavior, and best used for data archiving scenarios, where there's no
temporal logic necessary.

2. Application time (also named Event Time)

Application time is assigned when the event is generated, and it's part of the event payload. To process
events by application time, use the Timestamp by clause in the select query. If the Timestamp by clause is
absent, events are processed by arrival time.

It’s important to use a timestamp in the payload when temporal logic is involved. That way, delays in the
source system or in the network can be accounted for.

When using application time, the time progression is based on the incoming events. It’s difficult for the stream
processing system to know if there are no events, or if events are delayed. For this reason, Azure Stream Analytics

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-time-handling.md
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Late arriving events

Handling time variation with substreams

generates heuristic watermarks in the following ways for each input partition:

1. Whenever there's any incoming event, the watermark is the largest event time we have seen so far minus
the out-of-order tolerance window size.

2. Whenever there is no incoming event, the watermark is the current estimated arrival time (the elapsed time
on behind the scenes VM processing the events from last time an input event is seen plus that input event’s
arrival time) minus the late arrival tolerance window.

The arrival time can only be estimated, because the real arrival time is generated on the input event broker,
such as Event Hubs, and not the Azure Stream Analytics VM processing the events.

The design serves two additional purposes, besides generating watermarks:

1. The system generates results in a timely fashion with or without incoming events.

You have control over how timely they want to see the output results. In the Azure portal, on the Event
ordering page of your Stream Analytics job, you can configure the Out of order events setting. When
configuring that setting, consider the trade-off of timeliness with tolerance of out-of-order events in the
event stream.

The late arrival tolerance window is important to keep generating watermarks, even in the absence of
incoming events. At times, there may be a period where no incoming events come in, such as when an event
input stream is sparse. That problem is exacerbated by the use of multiple partitions in the input event
broker.

Streaming data processing systems without a late arrival tolerance window may suffer from delayed
outputs when inputs are sparse and multiple partitions are used.

2. The system behavior has to be repeatable. Repeatability is an important property of a streaming data
processing system.

The watermark is derived from arrival time and application time. Both are persisted in the event broker, and
thus repeatable. In the case the arrival time has to be estimated in the absence of events, Azure Stream
Analytics journals the estimated arrival time for repeatability during replay for the purpose of failure
recovery.

Notice that when you choose to use arrival time as the event time, there is no need to configure the out-of-order
tolerance and late arrival tolerance. Since arrival time is guaranteed to be monotonically increasing in the input
event broker, Azure Stream Analytics simply disregards the configurations.

By definition of late arrival tolerance window, for each incoming event, Azure Stream Analytics compares the
event time with the arrival time; if the event time is outside of the tolerance window, you can configure the
system to either drop the event or adjust the event’s time to be within the tolerance.

Consider that after watermarks are generated, the service can potentially receive events with event time lower than
the watermark. You can configure the service to either drop those events, or adjust the event’s time to the
watermark value.

As a part of the adjustment, the event’s System.Timestamp is set to the new value, but the event time field itself
is not changed. This adjustment is the only situation where an event’s System.Timestamp can be different from
the value in the event time field, and may cause unexpected results to be generated.

The heuristic watermark generation mechanism described here works well in most of the cases where time is

Early arriving events

Side effects of event ordering time tolerances

mostly synchronized between the various event senders. However, in real life, especially in many IoT scenarios, the
system has little control over the clock on the event senders. The event senders could be all sorts of devices in the
field, perhaps on different versions of hardware and software.

Instead of using a watermark global to all events in an input partition, Stream Analytics has another mechanism
called substreams to help you. You can utilize substreams in your job by writing a job query that uses the
TIMESTAMP BY clause and the keyword OVER. To designate the substream, provide a key column name after
the OVER keyword, such as a deviceid , so that system applies time policies by that column. Each substream gets
its own independent watermark. This mechanism is useful to allow timely output generation, when dealing with
large clock skews or network delays among event senders.

Substreams are a unique solution provided by Azure Stream Analytics, and are not offered by other streaming
data processing systems. Stream Analytics applies the late arrival tolerance window to incoming events when
substreams are used. The default setting (5 seconds) is likely too small for devices with divergent timestamps. We
recommend that you start with 5 minutes, and make adjustments according to their device clock skew pattern.

You may have noticed another concept called early arrival window, that looks like the opposite of late arrival
tolerance window. This window is fixed at 5 minutes, and serves a different purpose from late arrival one.

Because Azure Stream Analytics guarantees it always generates complete results, you can only specify job start
time as the first output time of the job, not the input time. The job start time is required so that the complete
window is processed, not just from the middle of the window.

Stream Analytics then derives the starting time from the query specification. However, because input event broker
is only indexed by arrival time, the system has to translate the starting event time to arrival time. The system can
start processing events from that point in the input event broker. With the early arriving window limit, the
translation is straightforward. It’s starting event time minus the 5-minute early arriving window. This calculation
also means that the system drops all events that are seen having event time 5 minutes greater than arrival time.

This concept is used to ensure the processing is repeatable no matter where you start to output from. Without
such a mechanism, it would not be possible to guarantee repeatability, as many other streaming systems claim
they do.

Stream Analytics jobs have several Event ordering options. Two can be configured in the Azure portal: the Out of
order events setting (out-of-order tolerance), and the Events that arrive late setting (late arrival tolerance). The
early arrival tolerance is fixed and cannot be adjusted. These time policies are used by Stream Analytics to
provide strong guarantees. However, these settings do have some sometimes unexpected implications:

1. Accidentally sending events that are too early.

Early events should not be outputted normally. It's possible that early events are sent to the output if
sender’s clock is running too fast though. All early arriving events are dropped, so you will not see any of
them from the output.

2. Sending old events to Event Hubs to be processed by Azure Stream Analytics.

While old events may seem harmless at first, because of the application of the late arrival tolerance, the old
events may be dropped. If the events are too old, the System.Timestamp value is altered during event
ingestion. Due to this behavior, currently Azure Stream Analytics is more suited for near-real-time event
processing scenarios, instead of historical event processing scenarios. You can set the Events that arrive
late time to the largest possible value (20 days) to work around this behavior in some cases.

3. Outputs seem to be delayed.

https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics

Metrics to observe

METRIC DESCRIPTION

Out-of-Order Events Indicates the number of events received out of order, that
were either dropped or given an adjusted timestamp. This
metric is directly impacted by the configuration of the Out of
order events setting on the Event ordering page on the job
in the Azure portal.

Late Input Events Indicates the number of events arriving late from the source.
This metric includes events that have been dropped or have
had their timestamp was adjusted. This metric is directly
impacted by the configuration of the Events that arrive late
setting in the Event ordering page on the job in the Azure
portal.

Early Input Events Indicates the number of events arriving early from the source
that have either been dropped, or their timestamp has been
adjusted if they are beyond 5 minutes early.

Watermark Delay Indicates the delay of the streaming data processing job. See
more information in the following section.

Watermark Delay details

The first watermark is generated at the calculated time: the maximum event time the system has
observed so far, minus the out-of-order tolerance window size. By default, the out-of-order tolerance is
configured to zero (00 minutes and 00 seconds). When you set it to a higher, non-zero time value, the
streaming job's first output is delayed by that value of time (or greater) due to the first watermark time that
is calculated.

4. Inputs are sparse.

When there is no input in a given partition, the watermark time is calculated as the arrival time minus the
late arrival tolerance window. As a result, if input events are infrequent and sparse, the output can be
delayed by that amount of time. The default Events that arrive late value is 5 seconds. You should expect
to see some delay when sending input events one at a time, for example. The delays can get worse, when
you set Events that arrive late window to a large value.

5. System.Timestamp value is different from the time in the event time field.

As described previously, the system adjusts event time by the out-of-order tolerance or late arrival tolerance
windows. The System.Timestamp value of the event is adjusted, but not the event time field.

You can observe a number of the Event ordering time tolerance effects through Stream Analytics job metrics. The
following metrics are relevant:

The Watermark delay metric is computed as the wall clock time of the processing node minus the largest
watermark it has seen so far. For more information, see the watermark delay blog post.

There can be several reasons this metric value is larger than 0 under normal operation:

1. Inherent processing delay of the streaming pipeline. Normally this delay is nominal.

2. The out-of-order tolerance window introduced delay, because watermark is reduced by the size of the
tolerance window.

https://azure.microsoft.com/blog/new-metric-in-azure-stream-analytics-tracks-latency-of-your-streaming-pipeline/

Output event frequency

Illustrated example of watermarks

EVENT TIME ARRIVAL TIME DEVICEID

12:07 12:07 device1

12:08 12:08 device2

12:17 12:11 device1

12:08 12:13 device3

12:19 12:16 device1

12:12 12:17 device3

12:17 12:18 device2

3. The late arrival window introduced delay, because watermark is reduced by the size the tolerance window.

4. Clock skew of the processing node generating the metric.

There are a number of other resource constraints that can cause the streaming pipeline to slow down. The
watermark delay metric can rise due to:

1. Not enough processing resources in Stream Analytics to handle the volume of input events. To scale up
resources, see Understand and adjust Streaming Units.

2. Not enough throughput within the input event brokers, so they are throttled. For possible solutions, see
Automatically scale up Azure Event Hubs throughput units.

3. Output sinks are not provisioned with enough capacity, so they are throttled. The possible solutions vary
widely based on the flavor of output service being used.

Azure Stream Analytics uses watermark progress as the only trigger to produce output events. Because the
watermark is derived from input data, it is repeatable during failure recovery and also in user initiated
reprocessing.

When using windowed aggregates, the service only produces outputs at the end of the windows. In some cases,
users may want to see partial aggregates generated from the windows. Partial aggregates are not supported
currently in Azure Stream Analytics.

In other streaming solutions, output events could be materialized at various trigger points, depending on external
circumstances. It's possible in some solutions that the output events for a given time window could be generated
multiple times. As the input values are refined, the aggregate results become more accurate. Events could be
speculated at first, and revised over time. For example, when a certain device is offline from the network, an
estimated value could be used by a system. Later on, the same device comes online to the network. Then the actual
event data could be included in the input stream. The output results from processing that time window produces
more accurate output.

The following images illustrate how watermarks progress in different circumstances.

This table shows the example data that is charted below. Notice that the event time and the arrival time vary,
sometimes matching and sometimes not.

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-auto-inflate

12:20 12:19 device2

12:16 12:21 device3

12:23 12:22 device2

12:22 12:24 device2

12:21 12:27 device3

EVENT TIME ARRIVAL TIME DEVICEID

In this illustration, the following tolerances are used:

Early arrival windows is 5 minutes
Late arriving window is 5 minutes
Reorder window is 2 minutes

1. Illustration of watermark progressing through these events:

Notable processes illustrated in the preceding graphic:

a. The first event (device1), and second event (device2) have aligned times and are processed without
adjustments. The watermark progresses on each event.

b. When the third event (device1) is processed, the arrival time (12:11) precedes the event time (12:17).
The event arrived 6 minutes early, so the event is dropped due to the 5-minute early arrival tolerance.

The watermark doesn't progress in this case of an early event.

c. The fourth event (device3), and fifth event (device1) have aligned times and are processed without
adjustment. The watermark progresses on each event.

d. When the sixth event (device3) is processed, the arrival time (12:17) and the event time (12:12) is
below the watermark level. The event time is adjusted to the water mark level (12:17).

e. When the twelfth event (device3) is processed, the arrival time (12:27) is 6 minutes ahead of the
event time (12:21). The late arrival policy is applied. The event time is adjusted (12:22), which is
above the watermark (12:21) so no further adjustment is applied.

Next steps

2. Second illustration of watermark progressing without an early arrival policy:

In this example, no early arrival policy is applied. Outlier events that arrive early raise the watermark
significantly. Notice the third event (deviceId1 at time 12:11) is not dropped in this scenario, and the
watermark is raised to 12:15. The fourth event time is adjusted forward 7 minutes (12:08 to 12:15) as a
result.

3. In the final illustration, substreams are used (OVER the DeviceId). Multiple watermarks are tracked, one per
stream. There are fewer events with their times adjusted as a result.

Azure Stream Analytics event order considerations
Stream Analytics job metrics

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events

Checkpoint and replay concepts in Azure Stream
Analytics jobs
4 minutes to read • Edit Online

Stateful query logic in temporal elements

Job recovery from node failure, including OS upgrade

Job recovery from a service upgrade

This article describes the internal checkpoint and replay concepts in Azure Stream Analytics, and the impact those
have on job recovery. Each time a Stream Analytics job runs, state information is maintained internally. That state
information is saved in a checkpoint periodically. In some scenarios, the checkpoint information is used for job
recovery if a job failure or upgrade occurs. In other circumstances, the checkpoint cannot be used for recovery, and
a replay is necessary.

One of the unique capability of Azure Stream Analytics job is to perform stateful processing, such as windowed
aggregates, temporal joins, and temporal analytic functions. Each of these operators keeps state information when
the job runs. The maximum window size for these query elements is seven days.

The temporal window concept appears in several Stream Analytics query elements:

1. Windowed aggregates (GROUP BY of Tumbling, Hopping, and Sliding windows)

2. Temporal joins (JOIN with DATEDIFF)

3. Temporal analytic functions (ISFIRST, LAST, and LAG with L IMIT DURATION)

Each time a Stream Analytics job runs, internally it is scaled out to do work across multiple worker nodes. Each
worker node's state is checkpointed every few minutes, which helps the system recover if a failure occurs.

At times, a given worker node may fail, or an Operating System upgrade can occur for that worker node. To
recover automatically, Stream Analytics acquires a new healthy node, and the prior worker node's state is restored
from the latest available checkpoint. To resume the work, a small amount of replay is necessary to restore the state
from the time when the checkpoint is taken. Usually, the restore gap is only a few minutes. When enough
Streaming Units are selected for the job, the replay should be completed quickly.

In a fully parallel query, the time it takes to catch up after a worker node failure is proportional to:

[the input event rate] x [the gap length] / [number of processing partitions]

If you ever observe significant processing delay because of node failure and OS upgrade, consider making the
query fully parallel, and scale the job to allocate more Streaming Units. For more information, see Scale an Azure
Stream Analytics job to increase throughput.

Current Stream Analytics does not show a report when this kind of recovery process is taking place.

Microsoft occasionally upgrades the binaries that run the Stream Analytics jobs in the Azure service. At these
times, users’ running jobs are upgraded to newer version and the job restarts automatically.

Currently, the recovery checkpoint format is not preserved between upgrades. As a result, the state of the
streaming query must be restored entirely using replay technique. In order to allow Stream Analytics jobs to
replay the exact same input from before, it’s important to set the retention policy for the source data to at least the

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-concepts-checkpoint-replay.md

Estimate replay catch-up time

Job recovery from a user initiated stop and start

Next steps

window sizes in your query. Failing to do so may result in incorrect or partial results during service upgrade, since
the source data may not be retained far enough back to include the full window size.

In general, the amount of replay needed is proportional to the size of the window multiplied by the average event
rate. As an example, for a job with an input rate of 1000 events per second, a window size greater than one hour is
considered to have a large replay size. Up to one hour of data may need to be re-processed to initialize the state so
it can produce full and correct results, which may cause delayed output (no output) for some extended period.
Queries with no windows or other temporal operators, like JOIN or LAG , would have zero replay.

To estimate the length of the delay due to a service upgrade, you can follow this technique:

1. Load the input Event Hub with sufficient data to cover the largest window size in your query, at expected
event rate. The events’ timestamp should be close to the wall clock time throughout that period of time, as if
it’s a live input feed. For example, if you have a 3-day window in your query, send events to Event Hub for
three days, and continue to send events.

2. Start the job using Now as the start time.

3. Measure the time between the start time and when the first output is generated. The time is rough how
much delay the job would incur during a service upgrade.

4. If the delay is too long, try to partition your job and increase number of SUs, so the load is spread out to
more nodes. Alternatively, consider reducing the window sizes in your query, and perform further
aggregation or other stateful processing on the output produced by the Stream Analytics job in the
downstream sink (for example, using Azure SQL database).

For general service stability concern during upgrade of mission critical jobs, consider running duplicate jobs in
paired Azure regions. For more information, see Guarantee Stream Analytics job reliability during service updates.

To edit the Query syntax on a streaming job, or to adjust inputs and outputs, the job needs to be stopped to make
the changes and upgrade the job design. In such scenarios, when a user stops the streaming job, and starts it
again, the recovery scenario is similar to service upgrade.

Checkpoint data cannot be used for a user initiated job restart. To estimate the delay of output during such a
restart, use the same procedure as described in the previous section, and apply similar mitigation if the delay is too
long.

For more information on reliability and scalability, see these articles:

Tutorial: Set up alerts for Azure Stream Analytics jobs
Scale an Azure Stream Analytics job to increase throughput
Guarantee Stream Analytics job reliability during service updates

Azure Stream Analytics output error policy
2 minutes to read • Edit Online

Retry

Drop

Next steps

This article describes the output data error handling policies that can be configured in Azure Stream Analytics.

Output data error handling policies apply only to data conversion errors that occur when the output event
produced by a Stream Analytics job does not conform to the schema of the target sink. You can configure this
policy by choosing either Retry or Drop. In the Azure portal, while in a Stream Analytics job, under Configure,
select Error Policy to make your selection.

When an error occurs, Azure Stream Analytics retries writing the event indefinitely until the write succeeds. There
is no timeout for retries. Eventually all subsequent events are blocked from processing by the event that is retrying.
This option is the default output error handling policy.

Azure Stream Analytics will drop any output event that results in a data conversion error. The dropped events
cannot be recovered for reprocessing later.

All transient errors (for example, network errors) are retried regardless of the output error handling policy
configuration.

Troubleshooting guide for Azure Stream Analytics

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-output-error-policy.md
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-troubleshooting-guide

Rotate login credentials for inputs and outputs of a
Stream Analytics Job
3 minutes to read • Edit Online

Regenerate new credentials and update your job with the new
credentials

Blob storage/Table storageBlob storage/Table storage

Whenever you regenerate credentials for an input or output of a Stream Analytics job, you should update the job
with new credentials. You must stop the job before updating the credentials, you can’t replace the credentials while
the job is running. To reduce the lag between stopping and restarting the job, Stream Analytics supports resuming
a job from its last output. This topic describes the process of rotating the login credentials and restarting the job
with new credentials.

In this section, we will walk you through regenerating credentials for Blob Storage, Event Hubs, SQL Database, and
Table Storage.

1. Sign in to the Azure portal > browse the storage account that you used as input/output for the Stream Analytics
job.

2. From the settings section, open Access keys. Between the two default keys (key1, key2), pick the one that is not
used by your job and regenerate it:

3. Copy the newly generated key.
4. From the Azure portal, browse your Stream Analytics job > select Stop and wait for the job to stop.
5. Locate the Blob/Table storage input/output for which you want to update credentials.
6. Find the Storage Account Key field and paste your newly generated key > click Save.
7. A connection test will automatically start when you save your changes, you can view it from the notifications

tab. There are two notifications- one corresponds to saving the update and other corresponds to testing the
connection:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-login-credentials-inputs-outputs.md

Event hubsEvent hubs

SQL DatabaseSQL Database

8. Proceed to start your job from the last stopped time section.

1. Sign in to the Azure portal > browse the Event Hub that you used as input/output for the Stream Analytics job.
2. From the settings section, open Shared access policies and select the required access policy. Between the

Primary Key and Secondary Key, pick the one that is not used by your job and regenerate it:

3. Copy the newly generated key.
4. From the Azure portal, browse your Stream Analytics job > select Stop and wait for the job to stop.
5. Locate the Event hubs input/output for which you want to update credentials.
6. Find the Event Hub Policy Key field and paste your newly generated key > click Save.
7. A connection test will automatically start when you save your changes, make sure that it has successfully

passed.
8. Proceed to start your job from the last stopped time section.

You need to connect to the SQL database to update the login credentials of an existing user. You can update
credentials by using Azure portal or a client-side tool such as SQL Server Management Studio. This section
demonstrates the process of updating credentials by using Azure portal.

1. Sign in to the Azure portal > browse the SQL database that you used as output for the Stream Analytics job.

2. From Data explorer, login/connect to your database > select Authorization type as SQL server
authentication > type in your Login and Password details > Select Ok.

Power BIPower BI

Start your job from the last stopped time

Next steps

Alter user `<user_name>` WITH PASSWORD = '<new_password>'
Alter role db_owner Add member `<user_name>`

3. In the query tab, alter the password for one of your user's by running the following query (make sure to
replace <user_name> with your username and <new_password> with your new password):

4. Make a note of the new password.

5. From the Azure portal, browse your Stream Analytics job > select Stop and wait for the job to stop.

6. Locate the SQL database output for which you want to rotate credentials. Update the password and save
changes.

7. A connection test will automatically start when you save your changes, make sure that it has successfully
passed.

8. Proceed to start your job from the last stopped time section.

1. Sign in to the Azure portal > browse your Stream Analytics job > select Stop and wait for the job to stop.
2. Locate the Power BI output for which you want to renew credentials > click the Renew authorization (you

should see a success message) > Save the changes.
3. A connection test will automatically start when you save your changes, make sure it has successfully passed.
4. Proceed to start your job from the last stopped time section.

1. Navigate to the job's Overview pane > select Start to start the job.
2. Select When last stopped > click Start. Note that the "When last stopped" option only appears if you

previously ran the job and had some output generated. The job is restarted based on the last output value's

time.

Introduction to Azure Stream Analytics

Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Configuring event ordering policies for Azure Stream
Analytics
4 minutes to read • Edit Online

Event time and Arrival Time

What is late arrival policy?

What is out-of-order policy?

Adjust or Drop events

EVENT NO. EVENT TIME ARRIVAL TIME SYSTEM.TIMESTAMP EXPLANATION

This article describes how to setup and use late arrival and out-of-order event policies in Azure Stream Analytics.
These policies are applied only when you use the TIMESTAMP BY clause in your query.

Your Stream Analytics job can process events based on either event time or arrival time. Event/application time
is the timestamp present in event payload (when the event was generated). Arrival time is the timestamp when
the event was received at the input source (Event Hubs/IoT Hub/Blob storage).

By default, Stream Analytics processes events by arrival time, but you can choose to process events by event time
by using TIMESTAMP BY clause in your query. Late arrival and out-of-order policies are applicable only if you
process events by event time. Consider latency and correctness requirements for your scenario when configuring
these settings.

Sometimes events arrive late because of various reasons. For example, an event that arrives 40 seconds late will
have event time = 00:10:00 and arrival time = 00:10:40. If you set the late arrival policy to 15 seconds, any event
that arrives later than 15 seconds will either be dropped (not processed by Stream Analytics) or have their event
time adjusted. In the example above, as the event arrived 40 seconds late (more than policy set), its event time will
be adjusted to the maximum of late arrival policy 00:10:25 (arrival time - late arrival policy value). Default late
arrival policy is 5 seconds.

Event may arrive out of order as well. After event time is adjusted based on late arrival policy, you can also choose
to automatically drop or adjust events that are out-of-order. If you set this policy to 8 seconds, any events that
arrive out of order but within the 8-second window are reordered by event time. Events that arrive later will be
either dropped or adjusted to the maximum out-of-order policy value. Default out-of-order policy is 0 seconds.

If events arrive late or out-of-order based on the policies you have configured, you can either drop such events (not
processed by Stream Analytics) or have their event time adjusted.

Let us see an example of these policies in action.
Late arrival policy: 15 seconds
Out-of-order policy: 8 seconds

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/event-ordering.md
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics

1 00:10:00 00:10:40 00:10:25 Event arrived late and
outside tolerance
level. So event time
gets adjusted to
maximum late arrival
tolerance.

2 00:10:30 00:10:41 00:10:30 Event arrived late but
within tolerance level.
So event time does
not get adjusted.

3 00:10:42 00:10:42 00:10:42 Event arrived on time.
No adjustment
needed.

4 00:10:38 00:10:43 00:10:38 Event arrived out-of-
order but within the
tolerance of 8
seconds. So, event
time does not get
adjusted. For analytics
purposes, this event
will be considered as
preceding event
number 4.

5 00:10:35 00:10:45 00:10:37 Event arrived out-of-
order and outside
tolerance of 8
seconds. So, event
time is adjusted to
maximum of out-of-
order tolerance.

EVENT NO. EVENT TIME ARRIVAL TIME SYSTEM.TIMESTAMP EXPLANATION

Can these settings delay output of my job?

I see LateInputEvents messages in my activity log

I see InputPartitionNotProgressing in my activity log

Yes. By default, out-of-order policy is set to zero (00 minutes and 00 seconds). If you change the default, your job's
first output is delayed by this value (or greater).

If one of the partitions of your inputs doesn't receive events, you should expect your output to be delayed by the
late arrival policy value. To learn why, read the InputPartition error section below.

These messages are shown to inform you that events have arrived late and are either dropped or adjusted
according to your configuration. You can ignore these messages if you have configured late arrival policy
appropriately.

Example of this message is:
{"message Time":"2019-02-04 17:11:52Z","error":null, "message":"First Occurred: 02/04/2019 17:11:48 | Resource
Name: ASAjob | Message: Source 'ASAjob' had 24 data errors of kind 'LateInputEvent' between processing times
'2019-02-04T17:10:49.7250696Z' and '2019-02-04T17:11:48.7563961Z'. Input event with application timestamp '2019-
02-04T17:05:51.6050000' and arrival time '2019-02-04T17:10:44.3090000' was sent later than configured
tolerance.","type":"DiagnosticMessage","correlation ID":"49efa148-4asd-4fe0-869d-a40ba4d7ef3b"}

Next steps

Your input source (Event Hub/IoT Hub) likely has multiple partitions. Azure Stream Analytics produces output for
time stamp t1 only after all the partitions that are combined are at least at time t1. For example, assume that the
query reads from an event hub partition that has two partitions. One of the partitions, P1, has events until time t1.
The other partition, P2, has events until time t1 + x. Output is then produced until time t1. But if there's an explicit
Partition by PartitionId clause, both the partitions progress independently.

When multiple partitions from the same input stream are combined, the late arrival tolerance is the maximum
amount of time that every partition waits for new data. If there is one partition in your Event Hub, or if IoT Hub
doesn’t receive inputs, the timeline for that partition doesn't progress until it reaches the late arrival tolerance
threshold. This delays your output by the late arrival tolerance threshold. In such cases, you may see the following
message:
{"message Time":"2/3/2019 8:54:16 PM UTC","message":"Input Partition [2] does not have additional data for more
than [5] minute(s). Partition will not progress until either events arrive or late arrival threshold is
met.","type":"InputPartitionNotProgressing","correlation ID":"2328d411-52c7-4100-ba01-1e860c757fc2"}

This message to inform you that at least one partition in your input is empty and will delay your output by the late
arrival threshold. To overcome this, it is recommended you either:

1. Ensure all partitions of your Event Hub/IoT Hub receive input.
2. Use Partition by PartitionID clause in your query.

Time handling considerations
Metrics available in Stream Analytics

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-monitoring#metrics-available-for-stream-analytics

Set up alerts for Azure Stream Analytics jobs
2 minutes to read • Edit Online

Set up alerts in the Azure portal
Get alerted when a job stops unexpectedlyGet alerted when a job stops unexpectedly

It's important to monitor your Azure Stream Analytics job to ensure the job is running continuously without any
problems. This article describes how to set up alerts for common scenarios that should be monitored.

You can define rules on metrics from Operation Logs data through the portal, as well as programmatically.

The following example demonstrates how to set up alerts for when your job enters a failed state. This alert is
recommended for all jobs.

1. In the Azure portal, open the Stream Analytics job you want to create an alert for.

2. On the Job page, navigate to the Monitoring section.

3. Select Metrics, and then New alert rule.

4. Your Stream Analytics job name should automatically appear under RESOURCE . Click Add condition,
and select All Administrative operations under Configure signal logic.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-set-up-alerts.md
https://code.msdn.microsoft.com/windowsazure/receive-email-notifications-199e2c9a

5. Under Configure signal logic, change Event Level to All and change Status to Failed. Leave Event
initiated by blank and select Done.

6. Select an existing action group or create a new group. In this example, a new action group called
TIDashboardGroupActions was created with an Emails action that sends an email to users with the
Owner Azure Resource Manager Role.

Scenarios to monitor

7. The RESOURCE , CONDITION , and ACTION GROUPS should each have an entry. Note that in order for
the alerts to fire, the conditions defined need to be met. For example, you can measure a metric's average
value of over the last 15 minutes, every 5 minutes.

Add an Alert rule name, Description, and your Resource Group to the ALERT DETAILS and click
Create alert rule to create the rule for your Stream Analytics job.

The following alerts are recommended for monitoring the performance of your Stream Analytics job. These
metrics should be evaluated every minute over the last 5-minute period.

METRIC CONDITION TIME AGGREGATION THRESHOLD CORRECTIVE ACTIONS

SU% Utilization Greater than Maximum 80 There are multiple
factors that increase
SU% Utilization. You
can scale with query
parallelization or
increase the number
of streaming units.
For more information,
see Leverage query
parallelization in
Azure Stream
Analytics.

Runtime errors Greater than Total 0 Examine the activity
or diagnostic logs and
make appropriate
changes to the
inputs, query, or
outputs.

Watermark delay Greater than Maximum When average value
of this metric over the
last 15 minutes is
greater than late
arrival tolerance (in
seconds). If you have
not modified the late
arrival tolerance, the
default is set to 5
seconds.

Try increasing the
number of SUs or
parallelizing your
query. For more
information on SUs,
see Understand and
adjust Streaming
Units. For more
information on
parallelizing your
query, see Leverage
query parallelization
in Azure Stream
Analytics.

Input deserialization
errors

Greater than Total 0 Examine the activity
or diagnostic logs and
make appropriate
changes to the input.
For more information
on diagnostic logs,
see Troubleshoot
Azure Stream
Analytics using
diagnostics logs

Get help

Next steps

For more detail on configuring alerts in the Azure portal, see Receive alert notifications.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/insights-receive-alert-notifications
https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-get-started

Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

How to start an Azure Stream Analytics job
2 minutes to read • Edit Online

Start options

Azure portal

Visual Studio

PowerShell

You can start your Azure Stream Analytics job using the Azure portal, Visual Studio, and PowerShell. When you
start a job, you select a time for the job to start creating output. Azure portal, Visual Studio, and PowerShell each
have different methods for setting the start time. Those methods are described below.

The three following options are available to start a job. Note that all the times mentioned below are the ones
specified in TIMESTAMP BY. If TIMESTAMP BY is not specified, arrival time will be used.

Now: Makes the starting point of the output event stream the same as when the job is started. If a temporal
operator is used (e.g. time window, LAG or JOIN), Azure Stream Analytics will automatically look back at the
data in the input source. For instance, if you start a job “Now” and if your query uses a 5-minutes Tumbling
Window, Azure Stream Analytics will seek data from 5 minutes ago in the input. The first possible output
event would have a timestamp equal to or greater than the current time, and ASA guarantees that all input
events that may logically contribute to the output has been accounted for. For example, no partial windowed
aggregates are generated. It’s always the complete aggregated value.

Custom: You can choose the starting point of the output. Similarly to the Now option, Azure Stream
Analytics will automatically read the data prior to this time if a temporal operator is used

When last stopped. This option is available when the job was previously started, but was stopped
manually or failed. When choosing this option Azure Stream Analytics will use the last output time to restart
the job so no data is lost. Similarly to previous options, Azure Stream Analytics will automatically read the
data prior to this time if a temporal operator is used. Since several input partitions may have different time,
the earliest stop time of all partitions is used, as a result some duplicates may be seen in the output. More
information about exactly-once processing are available on the page Event Delivery Guarantees.

Navigate to your job in the Azure portal and select Start on the overview page. Select a Job output start time
and then select Start.

Choose one of the options for Job output start time. The options are Now, Custom, and, if the job was previously
run, When last stopped. See above for more information about these options.

In the job view, select the green arrow button to start the job. Set the Job Output Start Mode and select Start.
The job status will change to Running.

There are three options for Job Output Start Mode: JobStartTime, CustomTime, and LastOutputEventTime. If
this property is absent, the default is JobStartTime. See above for more information about these options.

Use the following cmdlet to start your job using PowerShell:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/start-job.md
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/event-delivery-guarantees-azure-stream-analytics

Start-AzStreamAnalyticsJob `
 -ResourceGroupName $resourceGroup `
 -Name $jobName `
 -OutputStartMode 'JobStartTime'

Next steps

There are three options for OutputStartMode: JobStartTime, CustomTime, and LastOutputEventTime. If this
property is absent, the default is JobStartTime. See above for more information about these options.

For more information on the Start-AzStreamAnalyitcsJob cmdlet, view the Start-AzStreamAnalyticsJob reference.

Quickstart: Create a Stream Analytics job by using the Azure portal
Quickstart: Create a Stream Analytics job using Azure PowerShell
Quickstart: Create a Stream Analytics job by using the Azure Stream Analytics tools for Visual Studio

https://docs.microsoft.com/powershell/module/az.streamanalytics/start-azstreamanalyticsjob

Test an Azure Stream Analytics job in the portal
3 minutes to read • Edit Online

Automatically sample incoming data from input

In Azure Stream Analytics, you can test your query without starting or stopping your job. You can test queries on
incoming data from your streaming sources or upload sample data from a local file on Azure Portal. You can also
test queries locally from your local sample data or live data in Visual Studio and Visual Studio Code.

Azure Stream Analytics automatically fetches events from your streaming inputs. You can run queries on the
default sample or set a specific time frame for the sample.

1. Sign in to the Azure portal.

2. Locate and select your existing Stream Analytics job.

3. On the Stream Analytics job page, under the Job Topology heading, select Query to open the Query editor
window.

4. To see a sample list of incoming events, select the input with file icon and the sample events will
automatically appear in the Input preview.

a. The serialization type for your data is automatically detected if its JSON or CSV. You can manually change
it as well to JSON, CSV, AVRO by changing the option in the dropdown menu.

b. Use the selector to view your data in Table or Raw format.

c. If your data shown isn't current, select Refresh to see the latest events.

The following table is an example of data in the Table format:

The following table is an example of data in the Raw format:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-test-query.md

5. To test your query with incoming data, select Test query. Results appear in the Test results tab. You can
also select Download results to download the results.

6. To test your query against a specific time range of incoming events, select Select time range.

7. Set the time range of the events you want to use to test your query and select Sample. Within that time
frame, you can retrieve up to 1000 events or 1 MB, whichever comes first.

8. Once the events are sampled for selected time range, they appear in the Input preview tab.

9. Select Reset to see the sample list of incoming events. If you select Reset, your time range selection will be
lost. Select Test query to test your query and review the results in the Test results tab.

10. When you make changes to your query, select Save query to test the new query logic. This allows you to

Upload sample data from a local file

iteratively modify your query and test it again to see how the output changes.

11. After you verify the results shown in the browser, you're ready to Start the job.

Instead of using live data, you can use sample data from a local file to test your Azure Stream Analytics query.

1. Sign in to the Azure portal.

2. Locate your existing Stream Analytics job and select it.

3. On the Stream Analytics job page, under the Job Topology heading, select Query to open the Query editor
window.

4. To test your query with a local file, select Upload sample input on the Input preview tab.

5. Upload your local file to test the query. You can only upload files with the JSON, CSV, or AVRO formats.
Select OK.

6. As soon as you upload the file, you can also see the file contents in the form as a table or in it's raw format. If

Next steps

you select Reset, the sample data will return to the incoming input data explained in the previous section.
You can upload any other file to test the query at any time.

7. Select Test query to test your query against the uploaded sample file.

8. Test results are shown based on your query. You can change your query and select Save query to test the
new query logic. This allows you to iteratively modify your query and test it again to see how the output
changes.

9. When you use multiple outputs in the query, the results are shown based on selected output.

10. After you verify the results shown in the browser, you can Start the job.

Build an IoT solution by using Stream Analytics: this tutorial will guide you to build an end-to-end solution
with a data generator that will simulate traffic at a toll booth.

Azure Stream Analytics Query Language Reference

Query examples for common Stream Analytics usage patterns

Understand inputs for Azure Stream Analytics

Understand outputs from Azure Stream Analytics

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-build-an-iot-solution-using-stream-analytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

Stream Analytics and Power BI: A real-time analytics
dashboard for streaming data
7 minutes to read • Edit Online

Prerequisites

Add Power BI output

Azure Stream Analytics enables you to take advantage of one of the leading business intelligence tools, Microsoft
Power BI. In this article, you learn how create business intelligence tools by using Power BI as an output for your
Azure Stream Analytics jobs. You also learn how to create and use a real-time dashboard.

This article continues from the Stream Analytics real-time fraud detection tutorial. It builds on the workflow
created in that tutorial and adds a Power BI output so that you can visualize fraudulent phone calls that are
detected by a Streaming Analytics job.

You can watch a video that illustrates this scenario.

Before you start, make sure you have the following:

An Azure account.
An account for Power BI Pro. You can use a work account or a school account.
A completed version of the real-time fraud detection tutorial. The tutorial includes an app that generates
fictitious telephone-call metadata. In the tutorial, you create an event hub and send the streaming phone call
data to the event hub. You write a query that detects fraudulent calls (calls from the same number at the same
time in different locations).

In the real-time fraud detection tutorial, the output is sent to Azure Blob storage. In this section, you add an output
that sends information to Power BI.

SETTING SUGGESTED VALUE

Output alias CallStream-PowerBI

Dataset name sa-dataset

Table name fraudulent-calls

1. In the Azure portal, open the Streaming Analytics job that you created earlier. If you used the suggested
name, the job is named sa_frauddetection_job_demo .

2. On the left menu, select Outputs under Job topology. Then, select + Add and choose Power BI from the
dropdown menu.

3. Select + Add > Power BI. Then fill the form with the following details and select Authorize:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-power-bi-dashboard.md
https://powerbi.com/
https://www.youtube.com/watch?v=sgupt-a99ma

Write the query

WARNINGWARNING
If Power BI has a dataset and table that have the same names as the ones that you specify in the Stream Analytics
job, the existing ones are overwritten. We recommend that you do not explicitly create this dataset and table in your
Power BI account. They are automatically created when you start your Stream Analytics job and the job starts
pumping output into Power BI. If your job query doesn't return any results, the dataset and table are not created.

4. When you select Authorize, a pop-up window opens and you are asked to provide credentials to
authenticate to your Power BI account. Once the authorization is successful, Save the settings.

5. Click Create.

The dataset is created with the following settings:

defaultRetentionPolicy: BasicFIFO - Data is FIFO, with a maximum of 200,000 rows.
defaultMode: pushStreaming - The dataset supports both streaming tiles and traditional report-based
visuals (also known as push).

Currently, you can't create datasets with other flags.

For more information about Power BI datasets, see the Power BI REST API reference.

1. Close the Outputs blade and return to the job blade.

2. Click the Query box.

3. Enter the following query. This query is similar to the self-join query you created in the fraud-detection
tutorial. The difference is that this query sends results to the new output you created (CallStream-PowerBI).

https://msdn.microsoft.com/library/mt203562.aspx

Test the query

Run the job

NOTENOTE

/* Our criteria for fraud:
Calls made from the same caller to two phone switches in different locations (for example, Australia
and Europe) within five seconds */

SELECT System.Timestamp AS WindowEnd, COUNT(*) AS FraudulentCalls
INTO "CallStream-PowerBI"
FROM "CallStream" CS1 TIMESTAMP BY CallRecTime
JOIN "CallStream" CS2 TIMESTAMP BY CallRecTime

/* Where the caller is the same, as indicated by IMSI (International Mobile Subscriber Identity) */
ON CS1.CallingIMSI = CS2.CallingIMSI

/* ...and date between CS1 and CS2 is between one and five seconds */
AND DATEDIFF(ss, CS1, CS2) BETWEEN 1 AND 5

/* Where the switch location is different */
WHERE CS1.SwitchNum != CS2.SwitchNum
GROUP BY TumblingWindow(Duration(second, 1))

If you did not name the input CallStream in the fraud-detection tutorial, substitute your name for CallStream in
the FROM and JOIN clauses in the query.

4. Click Save.

This section is optional, but recommended.

1. If the TelcoStreaming app is not currently running, start it by following these steps:

Open Command Prompt.

Go to the folder where the telcogenerator.exe and modified telcodatagen.exe.config files are.

Run the following command:

telcodatagen.exe 1000 .2 2

2. On the Query page for your Stream Analytics job, click the dots next to the CallStream input and then
select Sample data from input.

3. Specify that you want three minutes' worth of data and click OK. Wait until you're notified that the data has
been sampled.

4. Click Test and review the results.

1. Make sure the TelcoStreaming app is running.

2. Navigate to the Overview page for your Stream Analytics job and select Start.

Create the dashboard in Power BI

Your Streaming Analytics job starts looking for fraudulent calls in the incoming stream. The job also creates the
dataset and table in Power BI and starts sending data about the fraudulent calls to them.

1. Go to Powerbi.com and sign in with your work or school account. If the Stream Analytics job query outputs
results, you see that your dataset is already created:

2. In your workspace, click + Create.

3. Create a new dashboard and name it Fraudulent Calls .

https://powerbi.com

4. At the top of the window, click Add tile, select CUSTOM STREAMING DATA, and then click Next.

5. Under YOUR DATSETS, select your dataset and then click Next.

6. Under Visualization Type, select Card, and then in the Fields list, select fraudulentcalls.

7. Click Next.

8. Fill in tile details like a title and subtitle.

9. Click Apply.

Now you have a fraud counter!

10. Follow the steps again to add a tile (starting with step 4). This time, do the following:

When you get to Visualization Type, select Line chart.

Add an axis and select windowend.

Add a value and select fraudulentcalls.

For Time window to display, select the last 10 minutes.

11. Click Next, add a title and subtitle, and click Apply.

The Power BI dashboard now gives you two views of data about fraudulent calls as detected in the
streaming data.

Learn more about Power BI

Learn about limitations and best practices

This tutorial demonstrates how to create only a few kinds of visualizations for a dataset. Power BI can help you
create other customer business intelligence tools for your organization. For more ideas, see the following
resources:

For another example of a Power BI dashboard, watch the Getting Started with Power BI video.
For more information about configuring Streaming Analytics job output to Power BI and using Power BI
groups, review the Power BI section of the Stream Analytics outputs article.
For information about using Power BI generally, see Dashboards in Power BI.

Currently, Power BI can be called roughly once per second. Streaming visuals support packets of 15 KB. Beyond
that, streaming visuals fail (but push continues to work). Because of these limitations, Power BI lends itself most
naturally to cases where Azure Stream Analytics does a significant data load reduction. We recommend using a
Tumbling window or Hopping window to ensure that data push is at most one push per second, and that your
query lands within the throughput requirements.

You can use the following equation to compute the value to give your window in seconds:

For example:

You have 1,000 devices sending data at one-second intervals.
You are using the Power BI Pro SKU that supports 1,000,000 rows per hour.
You want to publish the amount of average data per device to Power BI.

As a result, the equation becomes:

Given this configuration, you can change the original query to the following:

https://youtu.be/l-z_6p56aas?t=1m58s
https://powerbi.microsoft.com/documentation/powerbi-service-dashboards/

 SELECT
 MAX(hmdt) AS hmdt,
 MAX(temp) AS temp,
 System.TimeStamp AS time,
 dspl
 INTO "CallStream-PowerBI"
 FROM
 Input TIMESTAMP BY time
 GROUP BY
 TUMBLINGWINDOW(ss,4),
 dspl

Renew authorizationRenew authorization

Get help

Next steps

If the password has changed since your job was created or last authenticated, you need to reauthenticate your
Power BI account. If Azure Multi-Factor Authentication is configured on your Azure Active Directory (Azure AD)
tenant, you also need to renew Power BI authorization every two weeks. If you don't renew, you could see
symptoms such as a lack of job output or an Authenticate user error in the operation logs.

Similarly, if a job starts after the token has expired, an error occurs and the job fails. To resolve this issue, stop the
job that's running and go to your Power BI output. To avoid data loss, select the Renew authorization link, and
then restart your job from the Last Stopped Time.

After the authorization has been refreshed with Power BI, a green alert appears in the authorization area to reflect
that the issue has been resolved.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics query language reference
Azure Stream Analytics Management REST API reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Stop or delete your Azure Stream Analytics job
2 minutes to read • Edit Online

NOTENOTE

Stop a job in Azure portal

Delete a job in Azure portal

WARNINGWARNING

Azure Stream Analytics jobs can be easily stopped or deleted through the Azure portal, Azure PowerShell, Azure
SDK for .Net, or REST API. A Stream Analytics job cannot be recovered once it has been deleted.

When you stop your Stream Analytics job, the data persists only in the input and output storage, such as Event Hubs or
Azure SQL Database. If you are required to remove data from Azure, be sure to follow the removal process for the input and
output resources of your Stream Analytics job.

When you stop a job, the resources are deprovisioned and it stops processing events. Charges related to this job
are also stopped. However all your configuration are kept and you can restart the job later

1. Sign in to the Azure portal.

2. Locate your running Stream Analytics job and select it.

3. On the Stream Analytics job page, select Stop to stop the job.

A Stream Analytics job cannot be recovered once it has been deleted.

1. Sign in to the Azure portal.

2. Locate your existing Stream Analytics job and select it.

3. On the Stream Analytics job page, select Delete to delete the job.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-clean-up-your-job.md
https://portal.azure.com

Stop or delete a job using PowerShell

NOTENOTE

Stop or delete a job using Azure SDK for .NET

Stop or delete a job using REST API

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To stop a job using PowerShell, use the Stop-AzStreamAnalyticsJob cmdlet. To delete a job using PowerShell, use
the Remove-AzStreamAnalyticsJob cmdlet.

To stop a job using Azure SDK for .NET, use the StreamingJobsOperationsExtensions.BeginStop method. To delete
a job using Azure SDK for .NET, StreamingJobsOperationsExtensions.BeginDelete method.

To stop a job using REST API, refer to the Stop method. To delete a job using REST API, refer to the Delete method.

https://docs.microsoft.com/powershell/azure/new-azureps-module-az?view=azps-3.3.0
https://docs.microsoft.com/powershell/azure/install-az-ps?view=azps-3.3.0
https://docs.microsoft.com/powershell/module/az.streamanalytics/stop-azstreamanalyticsjob
https://docs.microsoft.com/powershell/module/az.streamanalytics/remove-azstreamanalyticsjob
https://docs.microsoft.com/dotnet/api/microsoft.azure.management.streamanalytics.streamingjobsoperationsextensions.beginstop?view=azure-dotnet
https://docs.microsoft.com/dotnet/api/microsoft.azure.management.streamanalytics.streamingjobsoperationsextensions.begindelete?view=azure-dotnet
https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-job#stop
https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-job#delete

Copy or back up Azure Stream Analytics jobs
2 minutes to read • Edit Online

Before you begin

Visual Studio Code

You can copy or back up your deployed Azure Stream Analytics jobs using Visual Studio Code or Visual Studio.

If you don't have an Azure subscription, create a free account.

Sign in to the Azure portal.

Install Azure Stream Analytics extension for Visual Studio Code or Azure Stream Analytics tools for Visual
Studio.

1. Click the Azure icon on the Visual Studio Code Activity Bar and then expand Stream Analytics node. Your
jobs should appear under your subscriptions.

2. To export a job to a local project, locate the job you wish to export in the Stream Analytics Explorer in
Visual Studio Code. Then select a folder for your project.

The project is exported to the folder you select and added to your current workspace.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/copy-job.md
https://azure.microsoft.com/free/
https://portal.azure.com/

Visual Studio

Next steps

3. To publish the job to another region or backup using another name, select Select from your subscriptions
to publish in the query editor (*.asaql) and follow the instructions.

1. Follow the export a deployed Azure Stream Analytics job to a project instructions.

2. Open the *.asaql file in the Query Editor, select Submit To Azure in the script editor and follow the
instructions to publish the job to another region or backup using a new name.

Quickstart: Create a Stream Analytics job by using Visual Studio Code
Quickstart: Create a Stream Analytics job by using Visual Studio
Deploy an Azure Stream Analytics job with CI/CD using Azure Pipelines

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-vs-tools#export-jobs-to-a-project

Guarantee Stream Analytics job reliability during
service updates
2 minutes to read • Edit Online

How do Azure paired regions address this concern?

Next steps

Part of being a fully managed service is the capability to introduce new service functionality and improvements at
a rapid pace. As a result, Stream Analytics can have a service update deploy on a weekly (or more frequent) basis.
No matter how much testing is done there is still a risk that an existing, running job may break due to the
introduction of a bug. If you are running mission critical jobs, these risks need to be avoided. You can reduce this
risk by following Azure’s paired region model.

Stream Analytics guarantees jobs in paired regions are updated in separate batches. As a result there is a sufficient
time gap between the updates to identify potential issues and remediate them.

With the exception of Central India (whose paired region, South India, does not have Stream Analytics presence),
the deployment of an update to Stream Analytics would not occur at the same time in a set of paired regions.
Deployments in multiple regions in the same group may occur at the same time.

The article on availability and paired regions has the most up-to-date information on which regions are paired.

It is recommended to deploy identical jobs to both paired regions. You should then monitor these jobs to get
notified when something unexpected happens. If one of these jobs ends up in a Failed state after a Stream
Analytics service update, you can contact customer support to help identify the root cause. You should also fail
over any downstream consumers to the healthy job output.

Introduction to Stream Analytics
Get started with Stream Analytics
Scale Stream Analytics jobs
Stream Analytics query language reference
Stream Analytics management REST API reference

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-job-reliability.md
https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-set-up-alerts#scenarios-to-monitor
https://docs.microsoft.com/azure/stream-analytics/job-states
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Authenticate Stream Analytics to Azure Data Lake
Storage Gen1 using managed identities
5 minutes to read • Edit Online

NOTENOTE

Azure portal

Azure Stream Analytics supports managed identity authentication with Azure Data Lake Storage (ADLS) Gen1
output. The identity is a managed application registered in Azure Active Directory that represents a given Stream
Analytics job, and can be used to authenticate to a targeted resource. Managed identities eliminate the limitations
of user-based authentication methods, like needing to reauthenticate due to password changes or user token
expirations that occur every 90 days. Additionally, managed identities help with the automation of Stream
Analytics job deployments that output to Azure Data Lake Storage Gen1.

This article shows you three ways to enable managed identity for an Azure Stream Analytics job that outputs to an
Azure Data Lake Storage Gen1 through the Azure portal, Azure Resource Manager template deployment, and
Azure Stream Analytics tools for Visual Studio.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

1. Start by creating a new Stream Analytics job or by opening an existing job in Azure portal. From the menu
bar located on the left side of the screen, select Managed Identity located under Configure.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-managed-identities-adls.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az?view=azps-3.3.0
https://docs.microsoft.com/powershell/azure/install-az-ps?view=azps-3.3.0

2. Select Use System-assigned Managed Identity from the window that appears on the right. Click Save to
a service principal for the identity of the Stream Analytics job in Azure Active Directory. The life cycle of the
newly created identity will be managed by Azure. When the Stream Analytics job is deleted, the associated
identity (that is, the service principal) is automatically deleted by Azure.

When the configuration is saved, the Object ID (OID) of the service principal is listed as the Principal ID as
shown below:

The service principal has the same name as the Stream Analytics job. For example, if the name of your job is
MyASAJob, the name of the service principal created is also MyASAJob.

3. In the output properties window of the ADLS Gen1 output sink, click the Authentication mode drop-down
and select **Managed Identity **.

4. Fill out the rest of the properties. To learn more about creating an ADLS output, see Create a Data lake
Store output with stream analytics. When you are finished, click Save.

https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-stream-analytics

5. Navigate to the Overview page of your ADLS Gen1 and click on Data explorer.

6. In the Data explorer pane, select Access and click Add in the Access pane.

7. In the text box on the Select user or group pane, type the name of the service principal. Remember that
the name of the service principal is also the name of the corresponding Stream Analytics job. As you begin
typing the principal name, it will appear below the text box. Choose the desired service principal name and
click Select.

8. In the Permissions pane, check the Write and Execute permissions and assign it to This Folder and all
children. Then click Ok.

9. The service principal is listed under Assigned Permissions on the Access pane as shown below. You can
now go back and start your Stream Analytics job.

Stream Analytics tools for Visual Studio

To learn more about Data Lake Storage Gen1 file system permissions, see Access Control in Azure Data
Lake Storage Gen1.

1. In JobConfig.json, set Use System-assigned Identity to True.

https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-access-control

2. In the output properties window of the ADLS Gen1 output sink, click the Authentication mode drop-down
and select **Managed Identity **.

 Resource Manager template deployment

3. Fill out the rest of the properties, and click Save.

4. Click Submit to Azure in the query editor.

When you submit the job, the tools do two things:

Automatically creates a service principal for the identity of the Stream Analytics job in Azure Active
Directory. The life cycle of the newly created identity will be managed by Azure. When the Stream
Analytics job is deleted, the associated identity (that is, the service principal) is automatically deleted
by Azure.

Automatically set Write and Execute permissions for the ADLS Gen1 prefix path used in the job
and assign it to this folder and all children.

5. You can generate the Resource Manager templates with the following property using Stream Analytics
CI.CD Nuget package version 1.5.0 or above on a build machine (outside of Visual Studio). Follow the
Resource Manager template deployment steps in the next section to get the service principal and grant
access to the service principal via PowerShell.

1. You can create a Microsoft.StreamAnalytics/streamingjobs resource with a managed identity by including
the following property in the resource section of your Resource Manager template:

https://www.nuget.org/packages/microsoft.azure.streamanalytics.cicd/

"Identity": {
 "Type": "SystemAssigned",
},

{
 "Name": "AsaJobWithIdentity",
 "Type": "Microsoft.StreamAnalytics/streamingjobs",
 "Location": "West US",
 "Identity": {
 "Type": "SystemAssigned",
 },
 "properties": {
 "sku": {
 "name": "standard"
 },
 "outputs": [
 {
 "name": "string",
 "properties":{
 "datasource": {
 "type": "Microsoft.DataLake/Accounts",
 "properties": {
 "accountName": "myDataLakeAccountName",
 "filePathPrefix": "cluster1/logs/{date}/{time}",
 "dateFormat": "YYYY/MM/DD",
 "timeFormat": "HH",
 "authenticationMode": "Msi"
 }
 }
 }
 }
 }
}

{
 "Name": "mySAJob",
 "Type": "Microsoft.StreamAnalytics/streamingjobs",
 "Location": "West US",
 "Identity": {
 "Type": "SystemAssigned",
 "principalId": "GUID",
 "tenantId": "GUID",
 },
 "properties": {
 "sku": {
 "name": "standard"
 },
 }
}

This property tells Azure Resource Manager to create and manage the identity for your Azure Stream
Analytics job.

Sample job

Sample job response

Take note of the Principal ID from the job response to grant access to the required ADLS resource.

The Tenant ID is the ID of the Azure Active Directory tenant where the service principal is created. The
service principal is created in the Azure tenant that is trusted by the subscription.

Limitations

Next steps

Set-AzDataLakeStoreItemAclEntry -AccountName <accountName> -Path <Path> -AceType User -Id <PrinicpalId>
-Permissions <Permissions>

PS > Set-AzDataLakeStoreItemAclEntry -AccountName "adlsmsidemo" -Path / -AceType
User -Id 14c6fd67-d9f5-4680-a394-cd7df1f9bacf -Permissions WriteExecute

The Type indicates the type of managed identity as explained in types of managed identities. Only the
System Assigned type is supported.

2. Provide Access to the service principal using PowerShell. To give access to the service principal via
PowerShell, execute the following command:

The PrincipalId is the Object ID of the service principal and is listed on the portal screen once the service
principal is created. If you created the job using a Resource Manager template deployment, the Object ID is
listed in the Identity property of the job response.

Example

To learn more about the above PowerShell command, refer to the Set-AzDataLakeStoreItemAclEntry
documentation.

This feature doesn’t support the following:

1. Multi-tenant access: The Service principal created for a given Stream Analytics job will reside on the
Azure Active Directory tenant on which the job was created, and cannot be used against a resource that
resides on a different Azure Active Directory tenant. Therefore, you can only use MSI on ADLS Gen 1
resources that are within the same Azure Active Directory tenant as your Azure Stream Analytics job.

2. User Assigned Identity: is not supported. This means the user is not able to enter their own service
principal to be used by their Stream Analytics job. The service principal is generated by Azure Stream
Analytics.

Create a Data lake Store output with stream analytics
Test Stream Analytics queries locally with Visual Studio
Test live data locally using Azure Stream Analytics tools for Visual Studio

https://docs.microsoft.com/powershell/module/az.datalakestore/set-azdatalakestoreitemaclentry
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-stream-analytics

Use reference data from a SQL Database for an
Azure Stream Analytics job
7 minutes to read • Edit Online

Azure portal

Portal prerequisitesPortal prerequisites

Define SQL Database reference data inputDefine SQL Database reference data input

Azure Stream Analytics supports Azure SQL Database as a source of input for reference data. You can use SQL
Database as reference data for your Stream Analytics job in the Azure portal and in Visual Studio with Stream
Analytics tools. This article demonstrates how to do both methods.

Use the following steps to add Azure SQL Database as a reference input source using the Azure portal:

1. Create a Stream Analytics job.

2. Create a storage account to be used by the Stream Analytics job.

3. Create your Azure SQL Database with a data set to be used as reference data by the Stream Analytics job.

1. In your Stream Analytics job, select Inputs under Job topology. Click Add reference input and choose
SQL Database.

2. Fill out the Stream Analytics Input Configurations. Choose the database name, server name, username and
password. If you want your reference data input to refresh periodically, choose “On” to specify the refresh
rate in DD:HH:MM. If you have large data sets with a short refresh rate, you can use a delta query.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/sql-reference-data.md

Specify storage account in Job configSpecify storage account in Job config

Start the jobStart the job

3. Test the snapshot query in the SQL query editor. For more information, see Use the Azure portal's SQL
query editor to connect and query data

Navigate to Storage account settings under Configure and select Add storage account.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-connect-query-portal

Tools for Visual Studio

Visual Studio prerequisitesVisual Studio prerequisites

Create a SQL Database tableCreate a SQL Database table

create table chemicals(Id Bigint,Name Nvarchar(max),FullName Nvarchar(max));

Choose your subscriptionChoose your subscription

Create a Stream Analytics projectCreate a Stream Analytics project

Once you have configured other inputs, outputs, and query, you can start the Stream Analytics job.

Use the following steps to add Azure SQL Database as a reference input source using Visual Studio:

1. Install the Stream Analytics tools for Visual Studio. The following versions of Visual Studio are supported:

Visual Studio 2015
Visual Studio 2019

2. Become familiar with the Stream Analytics tools for Visual Studio quickstart.

3. Create a storage account.

Use SQL Server Management Studio to create a table to store your reference data. See Design your first Azure
SQL database using SSMS for details.

The example table used in the following example was created from the following statement:

1. In Visual Studio, on the View menu, select Server Explorer.

2. Right click on Azure, select Connect to Microsoft Azure Subscription, and sign in with your Azure
account.

1. Select File > New Project.

2. In the templates list on the left, select Stream Analytics, and then select Azure Stream Analytics
Application.

3. Enter the project Name, Location, and Solution name, and select OK.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database

Define SQL Database reference data inputDefine SQL Database reference data input
1. Create a new input.

2. Double-click Input.json in the Solution Explorer.

3. Fill out the Stream Analytics Input Configuration. Choose the database name, server name, refresh type
and refresh rate. Specify the refresh rate in the format DD:HH:MM .

If you choose "Execute only once" or "Execute periodically", one SQL CodeBehind file named [Input
Alias].snapshot.sql is generated in the project under the Input.json file node.

If you choose "Refresh Periodically with Delta", two SQL CodeBehind files will be generated: [Input
Alias].snapshot.sql and [Input Alias].delta.sql.

Specify storage accountSpecify storage account

Test locally and deploy to AzureTest locally and deploy to Azure

4. Open the SQL file in the editor and write the SQL query.

5. If you are using Visual Studio 2019, and you have installed SQL Server Data tools, you can test the query
by clicking Execute. A wizard window will pop up to help you connect to the SQL database and the query
result will appear in the window at the bottom.

Open JobConfig.json to specify the storage account for storing SQL reference snapshots.

Before deploying the job to Azure, you can test the query logic locally against live input data. For more

 Delta query

Test your query

information on this feature, see Test live data locally using Azure Stream Analytics tools for Visual Studio
(Preview). When you're done testing, click Submit to Azure. Reference the Create a Stream Analytics using the
Azure Stream Analytics tools for Visual Studio quickstart to learn how to start the job.

When using the delta query, temporal tables in Azure SQL Database are recommended.

 CREATE TABLE DeviceTemporal
 (
 [DeviceId] int NOT NULL PRIMARY KEY CLUSTERED
 , [GroupDeviceId] nvarchar(100) NOT NULL
 , [Description] nvarchar(100) NOT NULL
 , [ValidFrom] datetime2 (0) GENERATED ALWAYS AS ROW START
 , [ValidTo] datetime2 (0) GENERATED ALWAYS AS ROW END
 , PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
 WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.DeviceHistory)); -- DeviceHistory table will be
used in Delta query

 SELECT DeviceId, GroupDeviceId, [Description]
 FROM dbo.DeviceTemporal
 FOR SYSTEM_TIME AS OF @snapshotTime

 SELECT DeviceId, GroupDeviceId, Description, 1 as _operation_
 FROM dbo.DeviceTemporal
 WHERE ValidFrom BETWEEN @deltaStartTime AND @deltaEndTime -- records inserted
 UNION
 SELECT DeviceId, GroupDeviceId, Description, 2 as _operation_
 FROM dbo.DeviceHistory -- table we created in step 1
 WHERE ValidTo BETWEEN @deltaStartTime AND @deltaEndTime -- record deleted

1. Create a temporal table in Azure SQL Database.

2. Author the snapshot query.

Use the @snapshotTime parameter to instruct the Stream Analytics runtime to obtain the reference data
set from SQL database temporal table valid at the system time. If you don't provide this parameter, you risk
obtaining an inaccurate base reference data set due to clock skews. An example of full snapshot query is
shown below:

3. Author the delta query.

This query retrieves all of the rows in your SQL database that were inserted or deleted within a start time,
@deltaStartTime, and an end time @deltaEndTime. The delta query must return the same columns as
the snapshot query, as well as the column operation. This column defines if the row is inserted or deleted
between @deltaStartTime and @deltaEndTime. The resulting rows are flagged as 1 if the records were
inserted, or 2 if deleted.

For records that were updated, the temporal table does bookkeeping by capturing an insertion and deletion
operation. The Stream Analytics runtime will then apply the results of the delta query to the previous
snapshot to keep the reference data up to date. An example of delta query is show below:

Note that Stream Analytics runtime may periodically run the snapshot query in addition to the delta query
to store checkpoints.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-temporal-tables

FAQs

Next steps

It is important to verify that your query is returning the expected dataset that the Stream Analytics job will use as
reference data. To test your query, go to Input under Job Topology section on portal. You can then select Sample
Data on your SQL Database Reference input. After the sample becomes available, you can download the file and
check to see if the data being returned is as expected. If you want a optimize your development and test iterations,
it is recommended to use the Stream Analytics tools for Visual Studio. You can also any other tool of your
preference to first ensure the query is returning the right results from you Azure SQL Database and then use that
in your Stream Analytics job.

Will I incur additional cost by using SQL reference data input in Azure Stream Analytics?

There are no additional cost per streaming unit in the Stream Analytics job. However, the Stream Analytics job
must have an associated Azure storage account. The Stream Analytics job queries the SQL DB (during job start
and refresh interval) to retrieve the reference data set and stores that snapshot in the storage account. Storing
these snapshots will incur additional charges detailed in the pricing page for Azure storage account.

How do I know reference data snapshot is being queried from SQL DB and used in the Azure Stream
Analytics job?

There are two metrics filtered by Logical Name (under Metrics Azure Portal) which you can use to monitor the
health of the SQL database reference data input.

InputEvents: This metric measures the number of records loaded in from the SQL database reference data set.
InputEventBytes: This metric measures the size of the reference data snapshot loaded in memory of the Stream
Analytics job.

The combination of both of these metrics can be used to infer if the job is querying the SQL database to fetch the
reference data set and then loading it to memory.

Will I require a special type of Azure SQL Database?

Azure Stream Analytics will work with any type of Azure SQL Database. However, it is important to understand
that the refresh rate set for your reference data input could impact your query load. To use the delta query option,
it is recommended to use temporal tables in Azure SQL Database.

Why does Azure Stream Analytics store snapshots in Azure Storage account?

Stream Analytics guarantees exactly once event processing and at least once delivery of events. In cases where
transient issues impact your job, a small amount of replay is necessary to restore state. To enable replay, it is
required to have these snapshots stored in an Azure Storage account. For more information on checkpoint replay,
see Checkpoint and replay concepts in Azure Stream Analytics jobs.

Using reference data for lookups in Stream Analytics
Quickstart: Create a Stream Analytics job by using the Azure Stream Analytics tools for Visual Studio
Test live data locally using Azure Stream Analytics tools for Visual Studio (Preview)

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio-install
https://azure.microsoft.com/pricing/details/stream-analytics/
https://azure.microsoft.com/pricing/details/storage/

Use Managed Identity to authenticate your Azure
Stream Analytics job to Azure Blob Storage output
5 minutes to read • Edit Online

Create the Stream Analytics job using the Azure portal

Managed Identity authentication for output to Azure Blob storage gives Stream Analytics jobs direct access to a
storage account instead of using a connection string. In addition to improved security, this feature also enables you
to write data to a storage account in a Virtual Network (VNET) within Azure.

This article shows you how to enable Managed Identity for the Blob output(s) of a Stream Analytics job through
the Azure portal and through an Azure Resource Manager deployment.

1. Create a new Stream Analytics job or open an existing job in the Azure portal. From the menu bar located
on the left side of the screen, select Managed Identity located under Configure. Ensure that "Use System-
assigned Managed Identity" is selected and then click the Save button on the bottom of the screen.

2. In the output properties window of the Azure Blob storage output sink, select the Authentication mode
drop-down and choose Managed Identity. For information regarding the other output properties, see
Understand outputs from Azure Stream Analytics. When you are finished, click Save.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/blob-output-managed-identity.md
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

3. Now that the job is created, see the Give the Stream Analytics job access to your storage account section of

Azure Resource Manager deployment

this article.

Using Azure Resource Manager allows you to fully automate the deployment of your Stream Analytics job. You can
deploy Resource Manager templates using either Azure PowerShell or the Azure CLI. The below examples use the
Azure CLI.

"Identity": {
 "Type": "SystemAssigned",
},

1. You can create a Microsoft.StreamAnalytics/streamingjobs resource with a Managed Identity by
including the following property in the resource section of your Resource Manager template:

This property tells Azure Resource Manager to create and manage the identity for your Stream Analytics
job. Below is an example Resource Manager template that deploys a Stream Analytics job with Managed
Identity enabled and a Blob output sink that uses Managed Identity:

https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

{
 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "apiVersion": "2017-04-01-preview",
 "name": "MyStreamingJob",
 "location": "[resourceGroup().location]",
 "type": "Microsoft.StreamAnalytics/StreamingJobs",
 "identity": {
 "type": "systemAssigned"
 },
 "properties": {
 "sku": {
 "name": "standard"
 },
 "outputs":[
 {
 "name":"output",
 "properties":{
 "serialization": {
 "type": "JSON",
 "properties": {
 "encoding": "UTF8"
 }
 },
 "datasource":{
 "type":"Microsoft.Storage/Blob",
 "properties":{
 "storageAccounts": [
 { "accountName": "MyStorageAccount" }
],
 "container": "test",
 "pathPattern": "segment1/{date}/segment2/{time}",
 "dateFormat": "yyyy/MM/dd",
 "timeFormat": "HH",
 "authenticationMode": "Msi"
 }
 }
 }
 }
]
 }
 }
]
}

az group deployment create --resource-group ExampleGroup -template-file StreamingJob.json

az resource show --ids
/subscriptions/{SUBSCRIPTION_ID}/resourceGroups/{RESOURCE_GROUP}/providers/Microsoft.StreamAnalytics/Str
eamingJobs/{RESOURCE_NAME}

The above job can be deployed to the Resource group ExampleGroup using the below Azure CLI
command:

2. After the job is created, you can use Azure Resource Manager to retrieve the job's full definition.

The above command will return a response like the below:

 Give the Stream Analytics job access to your storage account

Grant access via the Azure portalGrant access via the Azure portal
Container level accessContainer level access

{
 "id":
"/subscriptions/{SUBSCRIPTION_ID}/resourceGroups/{RESOURCE_GROUP}/providers/Microsoft.StreamAnalytics/st
reamingjobs/{RESOURCE_NAME}",
 "identity": {
 "principalId": "{PRINCIPAL_ID}",
 "tenantId": "{TENANT_ID}",
 "type": "SystemAssigned",
 "userAssignedIdentities": null
 },
 "kind": null,
 "location": "West US",
 "managedBy": null,
 "name": "{RESOURCE_NAME}",
 "plan": null,
 "properties": {
 "compatibilityLevel": "1.0",
 "createdDate": "2019-07-12T03:11:30.39Z",
 "dataLocale": "en-US",
 "eventsLateArrivalMaxDelayInSeconds": 5,
 "jobId": "{JOB_ID}",
 "jobState": "Created",
 "jobStorageAccount": null,
 "jobType": "Cloud",
 "outputErrorPolicy": "Stop",
 "package": null,
 "provisioningState": "Succeeded",
 "sku": {
 "name": "Standard"
 }
 },
 "resourceGroup": "{RESOURCE_GROUP}",
 "sku": null,
 "tags": null,
 "type": "Microsoft.StreamAnalytics/streamingjobs"
}

Take note of the principalId from the job's definition, which identifies your job's Managed Identity within
Azure Active Directory and will be used in the next step to grant the Stream Analytics job access to the
storage account.

3. Now that the job is created, see the Give the Stream Analytics job access to your storage account section of
this article.

There are two levels of access you can choose to give your Stream Analytics job:

1. Container level access: this option gives the job access to a specific existing container.
2. Account level access: this option gives the job general access to the storage account, including the ability to

create new containers.

Unless you need the job to create containers on your behalf, you should choose Container level access since this
option will grant the job the minimum level of access required. Both options are explained below for the Azure
portal and the command-line.

1. Navigate to the container's configuration pane within your storage account.

2. Select Access Control (IAM) on the left-hand side.

Account level accessAccount level access

3. Under the "Add a role assignment" section click Add.

4. In the role assignment pane:

a. Set the Role to "Storage Blob Data Contributor"
b. Ensure the Assign access to dropdown is set to "Azure AD user, group, or service principal".
c. Type the name of your Stream Analytics job in the search field.
d. Select your Stream Analytics job and click Save.

1. Navigate to your storage account.

2. Select Access Control (IAM) on the left-hand side.

3. Under the "Add a role assignment" section click Add.

4. In the role assignment pane:

a. Set the Role to "Storage Blob Data Contributor"
b. Ensure the Assign access to dropdown is set to "Azure AD user, group, or service principal".
c. Type the name of your Stream Analytics job in the search field.
d. Select your Stream Analytics job and click Save.

Grant access via the command lineGrant access via the command line
Container level accessContainer level access

az role assignment create --role "Storage Blob Data Contributor" --assignee <principal-id> --scope
/subscriptions/<subscription-id>/resourcegroups/<resource-
group>/providers/Microsoft.Storage/storageAccounts/<storage-
account>/blobServices/default/containers/<container-name>

Account level accessAccount level access

az role assignment create --role "Storage Blob Data Contributor" --assignee <principal-id> --scope
/subscriptions/<subscription-id>/resourcegroups/<resource-
group>/providers/Microsoft.Storage/storageAccounts/<storage-account>

Enable VNET access

To give access to a specific container, run the following command using the Azure CLI:

To give access to the entire account, run the following command using the Azure CLI:

When configuring your storage account's Firewalls and virtual networks, you can optionally allow in network
traffic from other trusted Microsoft services. When Stream Analytics authenticates using Managed Identity, it
provides proof that the request is originating from a trusted service. Below are instructions to enable this VNET
access exception.

1. Navigate to the “Firewalls and virtual networks” pane within the storage account’s configuration pane.
2. Ensure the “Allow trusted Microsoft services to access this storage account” option is enabled.
3. If you enabled it, click Save.

Limitations

Next steps

Below are the current limitations of this feature:

1. Classic Azure Storage accounts.

2. Azure accounts without Azure Active Directory.

3. Multi-tenant access is not supported. The Service principal created for a given Stream Analytics job must
reside in the same Azure Active Directory tenant in which the job was created, and cannot be used with a
resource that resides in a different Azure Active Directory tenant.

4. User Assigned Identity is not supported. This means the user is not able to enter their own service principal
to be used by their Stream Analytics job. The service principal must be generated by Azure Stream Analytics.

Understand outputs from Azure Stream Analytics
Azure Stream Analytics custom blob output partitioning

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

Use Managed Identity to authenticate your Azure
Stream Analytics job to Power BI
4 minutes to read • Edit Online

Prerequisites

Create a Stream Analytics job using the Azure portal

Managed Identity authentication for output to Power BI gives Stream Analytics jobs direct access to a workspace
within your Power BI account. This feature allows for deployments of Stream Analytics jobs to be fully automated,
since it is no longer required for a user to interactively log in to Power BI via the Azure portal. Additionally, long
running jobs that write to Power BI are now better supported, since you will not need to periodically reauthorize
the job.

This article shows you how to enable Managed Identity for the Power BI output(s) of a Stream Analytics job
through the Azure portal and through an Azure Resource Manager deployment.

The following are required for using this feature:

A Power BI account with a Pro license.

An upgraded workspace within your Power BI account. See Power BI's announcement of this feature for
more details.

1. Create a new Stream Analytics job or open an existing job in the Azure portal. From the menu bar located
on the left side of the screen, select Managed Identity located under Configure. Ensure that "Use System-
assigned Managed Identity" is selected and then select the Save button on the bottom of the screen.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/powerbi-output-managed-identity.md
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/power-bi/service-admin-purchasing-power-bi-pro
https://powerbi.microsoft.com/blog/announcing-new-workspace-experience-general-availability-ga/

2. Before configuring the output, give the Stream Analytics job access to your Power BI workspace by
following the directions in the Give the Stream Analytics job access to your Power BI workspace section of
this article.

3. Navigate to the Outputs section of your Stream Analytic's job, select + Add, and then choose Power BI.
Then, select the Authorize button and log in with your Power BI account.

4. Once authorized, a dropdown list will be populated with all of the workspaces you have access to. Select the

workspace that you authorized in the previous step. Then select Managed Identity as the "Authentication
mode". Finally, select the Save button.

Azure Resource Manager deployment
Azure Resource Manager allows you to fully automate the deployment of your Stream Analytics job. You can
deploy Resource Manager templates using either Azure PowerShell or the Azure CLI. The below examples use the
Azure CLI.

"identity": {
 "type": "SystemAssigned",
}

{
 "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "apiVersion": "2017-04-01-preview",
 "name": "pbi_managed_id",
 "location": "[resourceGroup().location]",
 "type": "Microsoft.StreamAnalytics/StreamingJobs",
 "identity": {
 "type": "systemAssigned"
 },
 "properties": {
 "sku": {
 "name": "standard"
 },
 "outputs":[
 {
 "name":"output",
 "properties":{
 "datasource":{
 "type":"PowerBI",
 "properties":{
 "dataset": "dataset_name",
 "table": "table_name",
 "groupId": "01234567-89ab-cdef-0123-456789abcdef",
 "authenticationMode": "Msi"
 }
 }
 }
 }
]
 }
 }
]
}

az group deployment create --resource-group ExampleGroup -template-file StreamingJob.json

1. You can create a Microsoft.StreamAnalytics/streamingjobs resource with a Managed Identity by
including the following property in the resource section of your Resource Manager template:

This property tells Azure Resource Manager to create and manage the identity for your Stream Analytics
job. Below is an example Resource Manager template that deploys a Stream Analytics job with Managed
Identity enabled and a Power BI output sink that uses Managed Identity:

Deploy the job above to the Resource group ExampleGroup using the below Azure CLI command:

2. After the job is created, use Azure Resource Manager to retrieve the job's full definition.

https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

 Give the Stream Analytics job access to your Power BI workspace

Use the Power BI UIUse the Power BI UI

NOTENOTE

az resource show --ids /subscriptions/<subsription-id>/resourceGroups/<resource-
group>/providers/Microsoft.StreamAnalytics/StreamingJobs/<resource-name>

{
 "id": "/subscriptions/<subscription-id>/resourceGroups/<resource-
group>/providers/Microsoft.StreamAnalytics/streamingjobs/<resource-name>",
 "identity": {
 "principalId": "<principal-id>",
 "tenantId": "<tenant-id>",
 "type": "SystemAssigned",
 "userAssignedIdentities": null
 },
 "kind": null,
 "location": "West US",
 "managedBy": null,
 "name": "<resource-name>",
 "plan": null,
 "properties": {
 "compatibilityLevel": "1.0",
 "createdDate": "2019-07-12T03:11:30.39Z",
 "dataLocale": "en-US",
 "eventsLateArrivalMaxDelayInSeconds": 5,
 "jobId": "<job-id>",
 "jobState": "Created",
 "jobStorageAccount": null,
 "jobType": "Cloud",
 "outputErrorPolicy": "Stop",
 "package": null,
 "provisioningState": "Succeeded",
 "sku": {
 "name": "Standard"
 }
 },
 "resourceGroup": "<resource-group>",
 "sku": null,
 "tags": null,
 "type": "Microsoft.StreamAnalytics/streamingjobs"
}

The above command will return a response like the below:

If you plan to use Power BI's REST API to add the Stream Analytics job to your Power BI workspace, make
note of the returned "principalId".

3. Now that the job is created, continue to the Give the Stream Analytics job access to your Power BI
workspace section of this article.

Now that the Stream Analytics job has been created, it can be given access to a Power BI workspace.

In order to add the Stream Analytics job to your Power BI workspace using the UI, you also have to enable service principal
access in the Developer settings in the Power BI admin portal. See Get started with a service principal for more details.

1. Navigate to the workspace's access settings. See this article for more details: Give access to your workspace.

2. Type the name of your Stream Analytics job in the text box and select Contributor as the access level.

https://docs.microsoft.com/power-bi/developer/embed-service-principal#get-started-with-a-service-principal
https://docs.microsoft.com/power-bi/service-create-the-new-workspaces#give-access-to-your-workspace

3. Select Add and close the pane.

Use the Power BI PowerShell cmdletsUse the Power BI PowerShell cmdlets

Install-Module -Name MicrosoftPowerBIMgmt

Login-PowerBI

Add-PowerBIWorkspaceUser -WorkspaceId <group-id> -PrincipalId <principal-id> -PrincipalType App -AccessRight
Contributor

Use the Power BI REST APIUse the Power BI REST API

POST https://api.powerbi.com/v1.0/myorg/groups/{groupId}/users

{
 "groupUserAccessRight": "Contributor",
 "identifier": "<principal-id>",
 "principalType": "App"
}

Limitations

Next steps

IMPORTANTIMPORTANT

1. Install the Power BI MicrosoftPowerBIMgmt PowerShell cmdlets.

Please ensure you are using version 1.0.821 or later of the cmdlets.

2. Log in to Power BI.

3. Add your Stream Analytics job as a Contributor to the workspace.

The Stream Analytics job can also be added as a Contributor to the workspace by using the "Add Group User"
REST API directly. Full documentation for this API can be found here: Groups - Add Group User.

Sample Request

Request Body

Below are the limitations of this feature:

Classic Power BI workspaces are not supported.

Azure accounts without Azure Active Directory.

Multi-tenant access is not supported. The Service principal created for a given Stream Analytics job must
reside in the same Azure Active Directory tenant in which the job was created, and cannot be used with a
resource that resides in a different Azure Active Directory tenant.

User Assigned Identity is not supported. This means you are not able to enter your own service principal to
be used by their Stream Analytics job. The service principal must be generated by Azure Stream Analytics.

Power BI dashboard integration with Azure Stream Analytics

https://docs.microsoft.com/rest/api/power-bi/groups/addgroupuser
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

Understand outputs from Azure Stream Analytics

Data protection in Azure Stream Analytics
2 minutes to read • Edit Online

Encrypt your data

Configure storage account for private data

Azure Stream Analytics is a fully managed platform-as-a-service that allows you to build real-time analytics
pipelines. All of the heavy lifting, such as cluster provisioning, scaling nodes to accommodate your usage, and
managing internal checkpoints, is managed behind the scenes.

Stream Analytics automatically employs best-in-class encryption standards across its infrastructure to encrypt and
secure your data. You can simply trust Stream Analytics to securely store all your data so that you don't have to
worry about managing the infrastructure.

If you want to use customer-managed keys (CMK) to encrypt your data, you can use your own storage account
(general purpose V1 or V2) to store any private data assets that are required by the Stream Analytics runtime. Your
storage account can be encrypted as needed. None of your private data assets are stored permanently by the
Stream Analytics infrastructure.

This setting must be configured at the time of Stream Analytics job creation, and it can't be modified throughout
the job's life cycle. Modification or deletion of storage that is being used by your Stream Analytics is not
recommended. If you delete your storage account, you will permanently delete all private data assets, which will
cause your job to fail.

Updating or rotating keys to your storage account is not possible using the Stream Analytics portal. You can update
the keys using the REST APIs.

Use the following steps to configure your storage account for private data assets. This configuration is made from
your Stream Analytics job, not from your storage account.

1. Sign in to the Azure portal.

2. Select Create a resource in the upper left-hand corner of the Azure portal.

3. SelectAnalytics>Stream Analytics jobfrom the results list.

4. Fill out the Stream Analytics job page with necessary details such as name, region, and scale.

5. Select the check box that says Secure all private data assets needed by this job in my Storage account.

6. Select a storage account from your subscription. Note that this setting cannot be modified throughout the
life cycle of the job.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/data-protection.md
https://portal.azure.com/

Private data assets that are stored
Any private data that is required to be persisted by Stream Analytics is stored in your storage account. Examples of
private data assets include:

Queries that you have authored and their related configurations

User-defined functions

Checkpoints needed by the Stream Analytics runtime

Snapshots of reference data

Connection details of your resources, which are used by your Stream Analytics job, are also stored. Encrypt your
storage account to secure all of your data.

To help you meet your compliance obligations in any regulated industry or environment, you can read more about
Microsoft's compliance offerings.

https://gallery.technet.microsoft.com/overview-of-azure-c1be3942

Next steps
Create an Azure Storage account
Understand inputs for Azure Stream Analytics
Checkpoint and replay concepts in Azure Stream Analytics jobs
Using reference data for lookups in Stream Analytics

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create

Real-time Twitter sentiment analysis in Azure Stream
Analytics
9 minutes to read • Edit Online

Scenario: Social media sentiment analysis in real time

Prerequisites

Create an event hub for streaming input

Create an event hub namespace and event hubCreate an event hub namespace and event hub

This article teaches you how to build a social media sentiment analysis solution by bringing real-time Twitter
events into Azure Event Hubs. You write an Azure Stream Analytics query to analyze the data and store the results
for later use or create a Power BI dashboard to provide insights in real-time.

Social media analytics tools help organizations understand trending topics. Trending topics are subjects and
attitudes that have a high volume of posts on social media. Sentiment analysis, which is also called opinion mining,
uses social media analytics tools to determine attitudes toward a product or idea.

Real-time Twitter trend analysis is a great example of an analytics tool because the hashtag subscription model
enables you to listen to specific keywords (hashtags) and develop sentiment analysis of the feed.

A company that has a news media website is interested in gaining an advantage over its competitors by featuring
site content that is immediately relevant to its readers. The company uses social media analysis on topics that are
relevant to readers by doing real-time sentiment analysis of Twitter data.

To identify trending topics in real time on Twitter, the company needs real-time analytics about the tweet volume
and sentiment for key topics.

In this how-to guide, you use a client application that connects to Twitter and looks for tweets that have certain
hashtags (which you can set). To run the application and analyze the tweets using Azure Streaming Analytics, you
must have the following:

If you don't have an Azure subscription, create a free account.

A Twitter account.

The TwitterClientCore application, which reads the Twitter feed. To get this application, download
TwitterClientCore.

Install the .NET Core CLI.

The sample application generates events and pushes them to an Azure event hub. Azure Event Hubs are the
preferred method of event ingestion for Stream Analytics. For more information, see the Azure Event Hubs
documentation.

In this section, you create an event hub namespace and add an event hub to that namespace. Event hub
namespaces are used to logically group related event bus instances.

1. Log in to the Azure portal and select Create a resource. Then. search for Event Hubs and select Create.

2. On the Create Namespace page, enter a namespace name. You can use any name for the namespace, but

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-twitter-sentiment-analysis-trends.md
https://powerbi.com/
https://azure.microsoft.com/free/
https://twitter.com
https://github.com/azure/azure-stream-analytics/tree/master/datagenerators/twitterclientcore
https://docs.microsoft.com/dotnet/core/tools/?tabs=netcore2x
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-what-is-event-hubs

Grant access to the event hubGrant access to the event hub

Endpoint=sb://EVENTHUBS-NAMESPACE.servicebus.windows.net/;SharedAccessKeyName=socialtwitter-
access;SharedAccessKey=Gw2NFZw6r...FxKbXaC2op6a0ZsPkI=;EntityPath=socialtwitter-eh

NOTENOTE

the name must be valid for a URL, and it must be unique across Azure.

3. Select a pricing tier and subscription, and create or choose a resource group. Then, choose a location and
select Create.

4. When the namespace has finished deploying, navigate to your resource group and find the event hub
namespace in your list of Azure resources.

5. From the new namespace, select + Event Hub.

6. Name the new event hub socialtwitter-eh. You can use a different name. If you do, make a note of it, because
you need the name later. You don't need to set any other options for the event hub.

7. Select Create.

Before a process can send data to an event hub, the event hub needs a policy that allows access. The access policy
produces a connection string that includes authorization information.

NOTENOTE

1. In the navigation bar on the left side of your event hubs namespace, select Event Hubs, which is located in
the Entities section. Then, select the event hub you just created.

2. In the navigation bar on the left side, select Shared access policies located under Settings.

There is a Shared access policies option under for the event hub namespace and for the event hub. Make sure you're
working in the context of your event hub, not the overall event hub namespace.

3. From the access policy page, select + Add. Then enter socialtwitter-access for the Policy name and check
the Manage checkbox.

4. Select Create.

5. After the policy has been deployed, select the policy from the list of shared access policies.

6. Find the box labeled Connection string primary-key and select the copy button next to the connection
string.

7. Paste the connection string into a text editor. You need this connection string for the next section after you
make some small edits.

The connection string looks like this:

Notice that the connection string contains multiple key-value pairs, separated with semicolons: Endpoint ,
SharedAccessKeyName , SharedAccessKey , and EntityPath .

For security, parts of the connection string in the example have been removed.

8. In the text editor, remove the EntityPath pair from the connection string (don't forget to remove the semicolon
that precedes it). When you're done, the connection string looks like this:

Endpoint=sb://EVENTHUBS-NAMESPACE.servicebus.windows.net/;SharedAccessKeyName=socialtwitter-
access;SharedAccessKey=Gw2NFZw6r...FxKbXaC2op6a0ZsPkI=

Configure and start the Twitter client application

Create a Twitter applicationCreate a Twitter application

NOTENOTE

The client application gets tweet events directly from Twitter. In order to do so, it needs permission to call the
Twitter Streaming APIs. To configure that permission, you create an application in Twitter, which generates unique
credentials (such as an OAuth token). You can then configure the client application to use these credentials when it
makes API calls.

If you do not already have a Twitter application that you can use for this how-to guide, you can create one. You
must already have a Twitter account.

The exact process in Twitter for creating an application and getting the keys, secrets, and token might change. If these
instructions don't match what you see on the Twitter site, refer to the Twitter developer documentation.

1. From a web browser, go to Twitter For Developers, and select Create an app. You might see a message
saying that you need to apply for a Twitter developer account. Feel free to do so, and after your application
has been approved, you should see a confirmation email. It could take several days to be approved for a
developer account.

2. In the Create an application page, provide the details for the new app, and then select Create your
Twitter application.

https://developer.twitter.com/en/apps

3. In the application page, select the Keys and Tokens tab and copy the values for Consumer API Key and

NOTENOTE

Configure the client applicationConfigure the client application

Create a Stream Analytics job

Specify the job input

Consumer API Secret Key. Also, select Create under Access Token and Access Token Secret to
generate the access tokens. Copy the values for Access Token and Access Token Secret.

Save the values that you retrieved for the Twitter application. You need the values later.

The keys and secrets for the Twitter application provide access to your Twitter account. Treat this information as sensitive, the
same as you do your Twitter password. For example, don't embed this information in an application that you give to others.

We've created a client application that connects to Twitter data using Twitter's Streaming APIs to collect tweet
events about a specific set of topics.

Before the application runs, it requires certain information from you, like the Twitter keys and the event hub
connection string.

1. Make sure you've downloaded the TwitterClientCore application, as listed in the prerequisites.

2. Use a text editor to open the App.config file. Make the following changes to the <appSettings> element:

Set oauth_consumer_key to the Twitter Consumer Key (API key).
Set oauth_consumer_secret to the Twitter Consumer Secret (API secret key).
Set oauth_token to the Twitter Access token.
Set oauth_token_secret to the Twitter Access token secret.
Set EventHubNameConnectionString to the connection string. Make sure that you use the connection string
that you removed the EntityPath key-value pair from.
Set EventHubName to the event hub name (that is the value of the entity path).

3. Open the command line and navigate to the directory where your TwitterClientCore app is located. Use the
command dotnet build to build the project. Then use the command dotnet run to run the app. The app
sends Tweets to your Event Hub.

Now that tweet events are streaming in real time from Twitter, you can set up a Stream Analytics job to analyze
these events in real time.

1. In the Azure portal, navigate to your resource group and select + Add. Then search for Stream Analytics
job and select Create.

2. Name the job socialtwitter-sa-job and specify a subscription, resource group, and location.

It's a good idea to place the job and the event hub in the same region for best performance and so that you
don't pay to transfer data between regions.

3. Select Create. Then navigate to your job when the deployment is finished.

1. In your Stream Analytics job, select Inputs from the left menu under Job Topology.

2. Select + Add stream input > Event Hub. Fill out the New input form with the following information:

https://dev.twitter.com/streaming/overview
https://github.com/azure/azure-stream-analytics/tree/master/datagenerators/twitterclientcore

Specify the job query

Create an output sink

SETTING SUGGESTED VALUE DESCRIPTION

Input alias TwitterStream Enter an alias for the input.

Subscription <Your subscription> Select the Azure subscription that
you want to use.

Event Hub namespace asa-twitter-eventhub

Event Hub name socialtwitter-eh Choose Use existing. Then select the
Event Hub you created.

Event compression type GZip The data compression type.

Leave the remaining default values and select Save.

Stream Analytics supports a simple, declarative query model that describes transformations. To learn more about
the language, see the Azure Stream Analytics Query Language Reference. This how-to guide helps you author and
test several queries over Twitter data.

To compare the number of mentions among topics, you can use a Tumbling window to get the count of mentions
by topic every five seconds.

SELECT *
FROM TwitterStream

SELECT System.Timestamp as Time, text
FROM TwitterStream
WHERE text LIKE '%Azure%'

1. In your job Overview, select Edit query near the top right of the Query box. Azure lists the inputs and
outputs that are configured for the job and lets you create a query to transform the input stream as it is sent
to the output.

2. Change the query in the query editor to the following:

3. Event data from the messages should appear in the Input preview window below your query. Ensure the
View is set to JSON . If you do not see any data, ensure that your data generator is sending events to your
event hub, and that you've selected GZip as the compression type for the input.

4. Select Test query and notice the results in the Test results window below your query.

5. Change the query in the code editor to the following and select Test query:

6. This query returns all tweets that include the keyword Azure.

You have now defined an event stream, an event hub input to ingest events, and a query to perform a
transformation over the stream. The last step is to define an output sink for the job.

In this how-to guide, you write the aggregated tweet events from the job query to Azure Blob storage. You can also
push your results to Azure SQL Database, Azure Table storage, Event Hubs, or Power BI, depending on your

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://docs.microsoft.com/stream-analytics-query/tumbling-window-azure-stream-analytics

Specify the job output

Start the job

Get support

Next steps

application needs.

1. Under the Job Topology section on the left navigation menu, select Outputs.

2. In the Outputs page, click + Add and Blob storage/Data Lake Storage Gen2:

Output alias: Use the name TwitterStream-Output .
Import options: Select Select storage from your subscriptions.
Storage account. Select your storage account.
Container. Select Create new and enter socialtwitter .

3. Select Save.

A job input, query, and output are specified. You are ready to start the Stream Analytics job.

1. Make sure the TwitterClientCore application is running.

2. In the job overview, select Start.

3. On the Start job page, for Job output start time, select Now and then select Start.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Get started using Azure Stream Analytics: Real-
time fraud detection
18 minutes to read • Edit Online

Scenario: Telecommunications and SIM fraud detection in real time

Prerequisites

This tutorial provides an end-to-end illustration of how to use Azure Stream Analytics. You learn how to:

Bring streaming events into an instance of Azure Event Hubs. In this tutorial, you'll use an app that
simulates a stream of mobile-phone metadata records.

Write SQL-like Stream Analytics queries to transform data, aggregating information or looking for
patterns. You will see how to use a query to examine the incoming stream and look for calls that might
be fraudulent.

Send the results to an output sink (storage) that you can analyze for additional insights. In this case,
you'll send the suspicious call data to Azure Blob storage.

This tutorial uses the example of real-time fraud detection based on phone-call data. The technique illustrated
is also suited for other types of fraud detection, such as credit card fraud or identity theft.

A telecommunications company has a large volume of data for incoming calls. The company wants to detect
fraudulent calls in real time so that they can notify customers or shut down service for a specific number. One
type of S IM fraud involves multiple calls from the same identity around the same time but in geographically
different locations. To detect this type of fraud, the company needs to examine incoming phone records and
look for specific patterns—in this case, for calls made around the same time in different countries/regions.
Any phone records that fall into this category are written to storage for subsequent analysis.

In this tutorial, you'll simulate phone-call data by using a client app that generates sample phone call
metadata. Some of the records that the app produces look like fraudulent calls.

Before you start, make sure you have the following:

NOTENOTE

An Azure account.

The call-event generator app, TelcoGenerator.zip, which can be downloaded from the Microsoft
Download Center. Unzip this package into a folder on your computer. If you want to see the source
code and run the app in a debugger, you can get the app source code from GitHub.

Windows might block the downloaded .zip file. If you can't unzip it, right-click the file and select Properties. If
you see the "This file came from another computer and might be blocked to help protect this computer"
message, select the Unblock option and then click Apply.

If you want to examine the results of the Streaming Analytics job, you also need a tool for viewing the
contents of an Azure Blob Storage container. If you use Visual Studio, you can use Azure Tools for Visual
Studio or Visual Studio Cloud Explorer. Alternatively, you can install standalone tools like Azure Storage
Explorer or Cerulean.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-real-time-fraud-detection.md
https://download.microsoft.com/download/8/b/d/8bd50991-8d54-4f59-ab83-3354b69c8a7e/telcogenerator.zip
https://aka.ms/azure-stream-analytics-telcogenerator
https://docs.microsoft.com/azure/vs-azure-tools-storage-resources-server-explorer-browse-manage
https://docs.microsoft.com/azure/vs-azure-tools-resources-managing-with-cloud-explorer
https://storageexplorer.com/
https://www.cerebrata.com/products/cerulean/features/azure-storage

Create an Azure Event Hubs to ingest events

NOTENOTE

Create a namespace and event hubCreate a namespace and event hub

To analyze a data stream, you ingest it into Azure. A typical way to ingest data is to use Azure Event Hubs,
which lets you ingest millions of events per second and then process and store the event information. For this
tutorial, you will create an event hub and then have the call-event generator app send call data to that event
hub. For more about event hubs, see the Azure Service Bus documentation.

For a more detailed version of this procedure, see Create an Event Hubs namespace and an event hub using the Azure
portal.

In this procedure, you first create an event hub namespace, and then you add an event hub to that
namespace. Event hub namespaces are used to logically group related event bus instances.

1. Log in to the Azure portal, and click Create a resource at the top left of the screen.

2. Select All services in the left menu, and select star (*) next to Event Hubs in the Analytics
category. Confirm that Event Hubs is added to FAVORITES in the left navigational menu.

3. Select Event Hubs under FAVORITES in the left navigational menu, and select Add on the toolbar.

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-what-is-event-hubs
https://docs.microsoft.com/azure/service-bus/
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-create

4. In the Create namespace pane, enter a namespace name such as <yourname>-eh-ns-demo . You can use
any name for the namespace, but the name must be valid for a URL and it must be unique across
Azure.

5. Select a subscription and create or choose a resource group, then click Create.

6. When the namespace has finished deploying, find the event hub namespace in your list of Azure
resources.

7. Click the new namespace, and in the namespace pane, click Event Hub.

8. Name the new event hub asa-eh-frauddetection-demo . You can use a different name. If you do, make a
note of it, because you need the name later. You don't need to set any other options for the event hub
right now.

Grant access to the event hub and get a connection stringGrant access to the event hub and get a connection string

9. Click Create.

Before a process can send data to an event hub, the event hub must have a policy that allows appropriate
access. The access policy produces a connection string that includes authorization information.

NOTENOTE

1. In the event namespace pane, click Event Hubs and then click the name of your new event hub.

2. In the event hub pane, click Shared access policies and then click + Add.

Make sure you're working with the event hub, not the event hub namespace.

3. Add a policy named asa-policy-manage-demo and for Claim, select Manage.

4. Click Create.

5. After the policy has been deployed, click it in the list of shared access policies.

6. Find the box labeled CONNECTION STRING-PRIMARY KEY and click the copy button next to the
connection string.

Configure and start the event generator application

Configure the TelcoGenerator appConfigure the TelcoGenerator app

Endpoint=sb://YOURNAME-eh-ns-demo.servicebus.windows.net/;SharedAccessKeyName=asa-policy-manage-
demo;SharedAccessKey=Gw2NFZwU1Di+rxA2T+6hJYAtFExKRXaC2oSQa0ZsPkI=;EntityPath=asa-eh-
frauddetection-demo

7. Paste the connection string into a text editor. You need this connection string for the next section, after
you make some small edits to it.

The connection string looks like this:

Notice that the connection string contains multiple key-value pairs, separated with semicolons:
Endpoint , SharedAccessKeyName , SharedAccessKey , and EntityPath .

Before you start the TelcoGenerator app, you must configure it so that it will send call records to the event
hub you created.

1. In the editor where you copied the connection string, make a note of the EntityPath value, and then
remove the EntityPath pair (don't forget to remove the semicolon that precedes it).

2. In the folder where you unzipped the TelcoGenerator.zip file, open the telcodatagen.exe.config file in an
editor. (There is more than one .config file, so be sure that you open the right one.)

3. In the <appSettings> element:

Set the value of the EventHubName key to the event hub name (that is, to the value of the entity
path).
Set the value of the Microsoft.ServiceBus.ConnectionString key to the connection string.

The <appSettings> section will look like the following example. (For clarity, the lines are wrapped and
some characters have been removed from the authorization token.)

Start the appStart the app

telcodatagen.exe 1000 0.2 2

RECORD DEFINITION

CallrecTime The timestamp for the call start time.

SwitchNum The telephone switch used to connect the call. For this
example, the switches are strings that represent the
country/region of origin (US, China, UK, Germany, or
Australia).

CallingNum The phone number of the caller.

CallingIMSI The International Mobile Subscriber Identity (IMSI). This is
the unique identifier of the caller.

CalledNum The phone number of the call recipient.

CalledIMSI International Mobile Subscriber Identity (IMSI). This is the
unique identifier of the call recipient.

Create a Stream Analytics job to manage streaming data

Create the jobCreate the job

4. Save the file.

1. Open a command window and change to the folder where the TelcoGenerator app is unzipped.

2. Enter the following command:

The parameters are:

Number of CDRs per hour.
S IM Card Fraud Probability: How often, as a percentage of all calls, that the app should simulate a
fraudulent call. The value 0.2 means that about 20% of the call records will look fraudulent.
Duration in hours. The number of hours that the app should run. You can also stop the app any time by
pressing Ctrl+C at the command line.

After a few seconds, the app starts displaying phone call records on the screen as it sends them to the event
hub.

Some of the key fields that you will be using in this real-time fraud detection application are the following:

Now that you have a stream of call events, you can set up a Stream Analytics job. The job will read data from
the event hub that you set up.

1. In the Azure portal, click Create a resource > Internet of Things > Stream Analytics job.

Configure job inputConfigure job input

2. Name the job asa_frauddetection_job_demo , specify a subscription, resource group, and location.

It's a good idea to place the job and the event hub in the same region for best performance and so that
you don't pay to transfer data between regions.

3. Click Create.

The job is created and the portal displays job details. Nothing is running yet, though—you have to
configure the job before it can be started.

1. In the dashboard or the All resources pane, find and select the asa_frauddetection_job_demo Stream
Analytics job.

2. In the Overview section of the Stream Analytics job pane, click the Input box.

3. Click Add stream input and select Event Hub. Then fill the New input page with the following
information:

Create queries to transform real-time data

SETTING SUGGESTED VALUE DESCRIPTION

Input alias CallStream Enter a name to identify the job’s
input.

Subscription <Your subscription> Select the Azure subscription that
has the Event Hub you created.

Event Hub namespace asa-eh-ns-demo Enter the name of the Event Hub
namespace.

Event Hub name asa-eh-frauddetection-demo Select the name of your Event Hub.

Event Hub policy name asa-policy-manage-demo Select the access policy that you
created earlier.

4. Click Create.

At this point, you have a Stream Analytics job set up to read an incoming data stream. The next step is to
create a query that analyzes the data in real time. Stream Analytics supports a simple, declarative query
model that describes transformations for real-time processing. The queries use a SQL-like language that has
some extensions specific to Stream Analytics.

Get sample data for testing queriesGet sample data for testing queries

A simple query might just read all the incoming data. However, you often create queries that look for specific
data or for relationships in the data. In this section of the tutorial, you create and test several queries to learn
a few ways in which you can transform an input stream for analysis.

The queries you create here will just display the transformed data to the screen. In a later section, you'll
configure an output sink and a query that writes the transformed data to that sink.

To learn more about the language, see the Azure Stream Analytics Query Language Reference.

The TelcoGenerator app is sending call records to the event hub, and your Stream Analytics job is configured
to read from the event hub. You can use a query to test the job to make sure that it's reading correctly. To test
a query in the Azure console, you need sample data. For this walkthrough, you'll extract sample data from the
stream that's coming into the event hub.

1. Make sure that the TelcoGenerator app is running and producing call records.

2. In the portal, return to the Streaming Analytics job pane. (If you closed the pane, search for
asa_frauddetection_job_demo in the All resources pane.)

3. Click the Query box. Azure lists the inputs and outputs that are configured for the job, and lets you
create a query that lets you transform the input stream as it is sent to the output.

4. In the Query pane, click the dots next to the CallStream input and then select Sample data from
input.

5. Set Minutes to 3 and then click OK.

Azure samples 3 minutes' worth of data from the input stream and notifies you when the sample data
is ready. (This takes a short while.)

The sample data is stored temporarily and is available while you have the query window open. If you close
the query window, the sample data is discarded, and you'll have to create a new set of sample data.

As an alternative, you can get a .json file that has sample data in it from GitHub, and then upload that .json

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://github.com/azure/azure-stream-analytics/blob/master/sample data/telco.json

Test using a pass-through queryTest using a pass-through query

Reduce the number of fields using a column projectionReduce the number of fields using a column projection

file to use as sample data for the CallStream input.

If you want to archive every event, you can use a pass-through query to read all the fields in the payload of
the event.

SELECT
 *
FROM
 CallStream

NOTENOTE

1. In the query window, enter this query:

As with SQL, keywords are not case-sensitive, and whitespace is not significant.

In this query, CallStream is the alias that you specified when you created the input. If you used a
different alias, use that name instead.

2. Click Test.

The Stream Analytics job runs the query against the sample data and displays the output at the
bottom of the window. The results indicate that the Event Hub and the Streaming Analytics job are
configured correctly. (As noted, later you'll create an output sink that the query can write data to.)

The exact number of records you see will depend on how many records were captured in your 3-
minute sample.

In many cases, your analysis doesn't need all the columns from the input stream. You can use a query to
project a smaller set of returned fields than in the pass-through query.

SELECT CallRecTime, SwitchNum, CallingIMSI, CallingNum, CalledNum
FROM
 CallStream

1. Change the query in the code editor to the following:

2. Click Test again.

Count incoming calls by region: Tumbling window with aggregationCount incoming calls by region: Tumbling window with aggregation
Suppose you want to count the number of incoming calls per region. In streaming data, when you want to
perform aggregate functions like counting, you need to segment the stream into temporal units (since the
data stream itself is effectively endless). You do this using a Streaming Analytics window function. You can
then work with the data inside that window as a unit.

For this transformation, you want a sequence of temporal windows that don't overlap—each window will
have a discrete set of data that you can group and aggregate. This type of window is referred to as a
Tumbling window. Within the Tumbling window, you can get a count of the incoming calls grouped by
SwitchNum , which represents the country/region where the call originated.

 ```SQL
 SELECT 
     System.Timestamp as WindowEnd, SwitchNum, COUNT(*) as CallCount 
 FROM
     CallStream TIMESTAMP BY CallRecTime 
 GROUP BY TUMBLINGWINDOW(s, 5), SwitchNum
 ```

1. Change the query in the code editor to the following:

This query uses the Timestamp By keyword in the FROM clause to specify which timestamp field in the
input stream to use to define the Tumbling window. In this case, the window divides the data into
segments by the CallRecTime field in each record. (If no field is specified, the windowing operation
uses the time that each event arrives at the event hub. See "Arrival Time Vs Application Time" in
Stream Analytics Query Language Reference.

The projection includes System.Timestamp , which returns a timestamp for the end of each window.

To specify that you want to use a Tumbling window, you use the TUMBLINGWINDOW function in the
GROUP BY clause. In the function, you specify a time unit (anywhere from a microsecond to a day) and

a window size (how many units). In this example, the Tumbling window consists of 5-second intervals,
so you will get a count by country/region for every 5 seconds' worth of calls.

2. Click Test again. In the results, notice that the timestamps under WindowEnd are in 5-second
increments.

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://docs.microsoft.com/stream-analytics-query/tumbling-window-azure-stream-analytics

Detect SIM fraud using a self-joinDetect SIM fraud using a self-join
For this example, consider fraudulent usage to be calls that originate from the same user but in different
locations within 5 seconds of one another. For example, the same user can't legitimately make a call from the
US and Australia at the same time.

To check for these cases, you can use a self-join of the streaming data to join the stream to itself based on the
CallRecTime value. You can then look for call records where the CallingIMSI value (the originating number)

is the same, but the SwitchNum value (country/region of origin) is not the same.

When you use a join with streaming data, the join must provide some limits on how far the matching rows
can be separated in time. (As noted earlier, the streaming data is effectively endless.) The time bounds for the
relationship are specified inside the ON clause of the join, using the DATEDIFF function. In this case, the join is
based on a 5-second interval of call data.

 ```SQL
 SELECT  System.Timestamp as Time, 
     CS1.CallingIMSI, 
     CS1.CallingNum as CallingNum1, 
     CS2.CallingNum as CallingNum2, 
     CS1.SwitchNum as Switch1, 
     CS2.SwitchNum as Switch2 
 FROM CallStream CS1 TIMESTAMP BY CallRecTime 
     JOIN CallStream CS2 TIMESTAMP BY CallRecTime 
     ON CS1.CallingIMSI = CS2.CallingIMSI 
     AND DATEDIFF(ss, CS1, CS2) BETWEEN 1 AND 5 
 WHERE CS1.SwitchNum != CS2.SwitchNum
 ```

1. Change the query in the code editor to the following:

This query is like any SQL join except for the DATEDIFF function in the join. This version of DATEDIFF

is specific to Streaming Analytics, and it must appear in the ON...BETWEEN clause. The parameters are a
time unit (seconds in this example) and the aliases of the two sources for the join. This is different from
the standard SQL DATEDIFF function.

The WHERE clause includes the condition that flags the fraudulent call: the originating switches are not
the same.

2. Click Test again.

Create an output sink to store transformed data

Create an Azure Blob Storage accountCreate an Azure Blob Storage account

3. Click Save to save the self-join query as part of the Streaming Analytics job. (It doesn't save the
sample data.)

You've defined an event stream, an event hub input to ingest events, and a query to perform a transformation
over the stream. The last step is to define an output sink for the job—that is, a place to write the transformed
stream to.

You can use many resources as output sinks—a SQL Server database, table storage, Data Lake storage,
Power BI, and even another event hub. For this tutorial, you'll write the stream to Azure Blob Storage, which
is a typical choice for collecting event information for later analysis, since it accommodates unstructured data.

If you have an existing blob storage account, you can use that. For this tutorial, you will learn how to create a
new storage account.

1. From the upper left-hand corner of the Azure portal, select Create a resource > Storage > Storage
account. Fill out the Storage account job page with Name set to "asaehstorage", Location set to
"East US", Resource group set to "asa-eh-ns-rg" (host the storage account in the same resource
group as the Streaming job for increased performance). The remaining settings can be left to their
default values.

SETTING SUGGESTED VALUE DESCRIPTION

Output alias CallStream-FraudulentCalls Enter a name to identify the job’s
output.

Subscription <Your subscription> Select the Azure subscription that
has the storage account you
created. The storage account can
be in the same or in a different
subscription. This example assumes
that you have created storage
account in the same subscription.

Storage account asaehstorage Enter the name of the storage
account you created.

Container asa-fraudulentcalls-demo Choose Create new and enter a
container name.

2. In the Azure portal, return to the Streaming Analytics job pane. (If you closed the pane, search for
asa_frauddetection_job_demo in the All resources pane.)

3. In the Job Topology section, click the Output box.

4. In the Outputs pane, click Add and select Blob storage. Then fill out the New output page with the
following information:

Start the Streaming Analytics job

5. Click Save.

The job is now configured. You've specified an input (the event hub), a transformation (the query to look for
fraudulent calls), and an output (blob storage). You can now start the job.

1. Make sure the TelcoGenerator app is running.

2. In the job pane, click Start. In the Start job pane, for Job output start time, select Now.

Examine the transformed data

Clean up resources

Get support

Next steps

You now have a complete Streaming Analytics job. The job is examining a stream of phone call metadata,
looking for fraudulent phone calls in real time, and writing information about those fraudulent calls to
storage.

To complete this tutorial, you might want to look at the data being captured by the Streaming Analytics job.
The data is being written to Azure Blog Storage in chunks (files). You can use any tool that reads Azure Blob
Storage. As noted in the Prerequisites section, you can use Azure extensions in Visual Studio, or you can use
a tool like Azure Storage Explorer or Cerulean.

When you examine the contents of a file in blob storage, you see something like the following:

There are additional articles that continue with the fraud-detection scenario and use the resources you've
created in this tutorial. If you want to continue, see the suggestions under Next steps.

However, if you're done and you don't need the resources you've created, you can delete them so that you
don't incur unnecessary Azure charges. In that case, we suggest that you do the following:

1. Stop the Streaming Analytics job. In the Jobs pane, click Stop at the top.
2. Stop the Telco Generator app. In the command window where you started the app, press Ctrl+C.
3. If you created a new blob storage account just for this tutorial, delete it.
4. Delete the Streaming Analytics job.
5. Delete the event hub.
6. Delete the event hub namespace.

For further assistance, try the Azure Stream Analytics forum.

You can continue this tutorial with the following article:

Stream Analytics and Power BI: A real-time analytics dashboard for streaming data. This article shows you
how to send the TelCo output of the Stream Analytics job to Power BI for real-time visualization and
analysis.

For more information about Stream Analytics in general, see these articles:

Introduction to Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference

https://storageexplorer.com/
https://www.cerebrata.com/products/cerulean/features/azure-storage
https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

Azure Stream Analytics Management REST API Reference

https://msdn.microsoft.com/library/azure/dn835031.aspx

Azure Stream Analytics on IoT Edge
9 minutes to read • Edit Online

Scenarios

Edge jobs in Azure Stream Analytics
What is an "edge" job?What is an "edge" job?

Azure Stream Analytics (ASA) on IoT Edge empowers developers to deploy near-real-time analytical intelligence
closer to IoT devices so that they can unlock the full value of device-generated data. Azure Stream Analytics is
designed for low latency, resiliency, efficient use of bandwidth, and compliance. Enterprises can now deploy
control logic close to the industrial operations and complement Big Data analytics done in the cloud.

Azure Stream Analytics on IoT Edge runs within the Azure IoT Edge framework. Once the job is created in ASA,
you can deploy and manage it using IoT Hub.

Low-latency command and control: For example, manufacturing safety systems must respond to
operational data with ultra-low latency. With ASA on IoT Edge, you can analyze sensor data in near real-time,
and issue commands when you detect anomalies to stop a machine or trigger alerts.
Limited connectivity to the cloud: Mission critical systems, such as remote mining equipment, connected
vessels, or offshore drilling, need to analyze and react to data even when cloud connectivity is intermittent.
With ASA, your streaming logic runs independently of the network connectivity and you can choose what you
send to the cloud for further processing or storage.
Limited bandwidth: The volume of data produced by jet engines or connected cars can be so large that data
must be filtered or pre-processed before sending it to the cloud. Using ASA, you can filter or aggregate the
data that needs to be sent to the cloud.
Compliance: Regulatory compliance may require some data to be locally anonymized or aggregated before
being sent to the cloud.

ASA Edge jobs run in containers deployed to Azure IoT Edge devices. They are composed of two parts:

https://github.com/Microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-edge.md
https://azure.microsoft.com/campaigns/iot-edge/
https://docs.microsoft.com/azure/iot-edge/how-iot-edge-works

Installation instructionsInstallation instructions

STEP NOTES

1 Create a storage container Storage containers are used to save
your job definition where they can be
accessed by your IoT devices.
You can reuse any existing storage
container.

2 Create an ASA edge job Create a new job, select Edge as
hosting environment.
These jobs are created/managed from
the cloud, and run on your own IoT
Edge devices.

3 Setup your IoT Edge environment
on your device(s)

Instructions for Windows or Linux.

4 Deploy ASA on your IoT Edge
device(s)

ASA job definition is exported to the
storage container created earlier.

Create a storage containerCreate a storage container

1. A cloud part that is responsible for job definition: users define inputs, output, query, and other settings (out of
order events, etc.) in the cloud.

2. A module running on your IoT devices. It contains the ASA engine and receives the job definition from the
cloud.

ASA uses IoT Hub to deploy edge jobs to device(s). More information about IoT Edge deployment can be seen
here.

The high-level steps are described in the following table. More details are given in the following sections.

You can follow this step-by-step tutorial to deploy your first ASA job on IoT Edge. The following video should help
you understand the process to run a Stream Analytics job on an IoT edge device:

A storage container is required in order to export the ASA compiled query and the job configuration. It is used to
configure the ASA Docker image with your specific query.

1. Follow these instructions to create a storage account from the Azure portal. You can keep all default options to
use this account with ASA.

https://docs.microsoft.com/azure/iot-edge/module-deployment-monitoring
https://docs.microsoft.com/azure/iot-edge/quickstart
https://docs.microsoft.com/azure/iot-edge/quickstart-linux
https://docs.microsoft.com/azure/iot-edge/tutorial-deploy-stream-analytics
https://channel9.msdn.com/events/connect/2017/t157/player?nocookie=true
https://docs.microsoft.com/azure/storage/common/storage-create-storage-account

Create an ASA Edge jobCreate an ASA Edge job

NOTENOTE

2. In the newly created storage account, create a blob storage container:
a. Click on Blobs, then + Container.
b. Enter a name and keep the container as Private.

This tutorial focuses on ASA job creation using Azure portal. You can also use Visual Studio plugin to create an ASA Edge job

1. From the Azure portal, create a new "Stream Analytics job". Direct link to create a new ASA job here.

2. In the creation screen, select Edge as hosting environment (see the following picture)

3. Job Definition

a. Define Input Stream(s). Define one or several input streams for your job.
b. Define Reference data (optional).
c. Define Output Stream(s). Define one or several outputs streams for your job.
d. Define query. Define the ASA query in the cloud using the inline editor. The compiler automatically

checks the syntax enabled for ASA edge. You can also test your query by uploading sample data.
4. Set the storage container information in the IoT Edge settings menu.

5. Set optional settings

a. Event ordering. You can configure out-of-order policy in the portal. Documentation is available here.
b. Locale. Set the internalization format.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio-edge-jobs
https://ms.portal.azure.com/#create/Microsoft.StreamAnalyticsJob
https://docs.microsoft.com/stream-analytics-query/time-skew-policies-azure-stream-analytics

NOTENOTE

Set up your IoT Edge environment on your device(s)Set up your IoT Edge environment on your device(s)

Deployment ASA on your IoT Edge device(s)Deployment ASA on your IoT Edge device(s)
A d d A SA t o y o u r d e p l o y m e n tA d d A SA t o y o u r d e p l o y m e n t

When a deployment is created, ASA exports the job definition to a storage container. This job definition remain the same
during the duration of a deployment. As a consequence, if you want to update a job running on the edge, you need to edit
the job in ASA, and then create a new deployment in IoT Hub.

Edge jobs can be deployed on devices running Azure IoT Edge. For this, you need to follow these steps:

Create an Iot Hub.
Install Docker and IoT Edge runtime on your edge devices.
Set your devices as IoT Edge devices in IoT Hub.

These steps are described in the IoT Edge documentation for Windows or Linux.

In the Azure portal, open IoT Hub, navigate to IoT Edge and click on the device you want to target for this
deployment.
Select Set modules, then select + Add and choose Azure Stream Analytics Module.
Select the subscription and the ASA Edge job that you created. Click Save.

https://docs.microsoft.com/azure/iot-edge/quickstart
https://docs.microsoft.com/azure/iot-edge/quickstart-linux

NOTENOTE

C o n fi g u r e r o u t e sC o n fi g u r e r o u t e s

Ex a mp l eEx a mp l e

{
 "routes": {
 "sensorToAsa": "FROM /messages/modules/tempSensor/* INTO
BrokeredEndpoint(\"/modules/ASA/inputs/temperature\")",
 "alertsToCloud": "FROM /messages/modules/ASA/* INTO $upstream",
 "alertsToReset": "FROM /messages/modules/ASA/* INTO
BrokeredEndpoint(\"/modules/tempSensor/inputs/control\")"
 }
}

During this step, ASA creates a folder named "EdgeJobs" in the storage container (if it does not exist already). For each
deployment, a new subfolder is created in the "EdgeJobs" folder. When you deploy your job to IoT Edge devices, ASA creates
a shared access signature (SAS) for the job definition file. The SAS key is securely transmitted to the IoT Edge devices using
device twin. The expiration of this key is three years from the day of its creation. When you update an IoT Edge job, the SAS
will change, but the image version will not change. Once you Update, follow the deployment workflow, and an update
notification is logged on the device.

For more information about IoT Edge deployments, see to this page.

IoT Edge provides a way to declaratively route messages between modules, and between modules and IoT Hub.
The full syntax is described here. Names of the inputs and outputs created in the ASA job can be used as
endpoints for routing.

This example shows the routes for the scenario described in the following picture. It contains an edge job called
"ASA", with an input named "temperature" and an output named "alert".

This example defines the following routes:

Every message from the tempSensor is sent to the module named ASA to the input named temperature,
All outputs of ASA module are sent to the IoT Hub linked to this device ($upstream),
All outputs of ASA module are sent to the control endpoint of the tempSensor.

https://docs.microsoft.com/azure/iot-edge/module-deployment-monitoring
https://docs.microsoft.com/azure/iot-edge/module-composition

Technical information
Current limitations for IoT Edge jobs compared to cloud jobsCurrent limitations for IoT Edge jobs compared to cloud jobs

Runtime and hardware requirementsRuntime and hardware requirements

Input and outputInput and output
Input and Output StreamsInput and Output Streams

R e fe r e n c e d a t aR e fe r e n c e d a t a

The goal is to have parity between IoT Edge jobs and cloud jobs. Most SQL query language features are
supported, enabling to run the same logic on both cloud and IoT Edge. However the following features are not yet
supported for edge jobs:

User-defined functions (UDF) in JavaScript. UDF are available in C# for IoT Edge jobs (preview).
User-defined aggregates (UDA).
Azure ML functions.
Using more than 14 aggregates in a single step.
AVRO format for input/output. At this time, only CSV and JSON are supported.
The following SQL operators:

Late arrival policy

PARTITION BY
GetMetadataPropertyValue

To run ASA on IoT Edge, you need devices that can run Azure IoT Edge.

ASA and Azure IoT Edge use Docker containers to provide a portable solution that runs on multiple host
operating systems (Windows, Linux).

ASA on IoT Edge is made available as Windows and Linux images, running on both x86-64 or ARM (Advanced
RISC Machines) architectures.

ASA Edge jobs can get inputs and outputs from other modules running on IoT Edge devices. To connect from and
to specific modules, you can set the routing configuration at deployment time. More information is described on
the IoT Edge module composition documentation.

For both inputs and outputs, CSV and JSON formats are supported.

For each input and output stream you create in your ASA job, a corresponding endpoint is created on your
deployed module. These endpoints can be used in the routes of your deployment.

At present, the only supported stream input and stream output types are Edge Hub. Reference input supports
reference file type. Other outputs can be reached using a cloud job downstream. For example, a Stream Analytics
job hosted in Edge sends output to Edge Hub, which can then send output to IoT Hub. You can use a second cloud
hosted Azure Stream Analytics job with input from IoT Hub and output to Power BI or another output type.

Reference data (also known as a lookup table) is a finite data set that is static or slow changing in nature. It is used
to perform a lookup or to correlate with your data stream. To make use of reference data in your Azure Stream
Analytics job, you will generally use a Reference Data JOIN in your query. For more information, see the Using
reference data for lookups in Stream Analytics.

Only local reference data is supported. When a job is deployed to IoT Edge device, it loads reference data from the
user defined file path.

To create a job with reference data on Edge:

1. Create a new input for your job.

2. Choose Reference data as the Source Type.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-edge-csharp-udf
https://azure.microsoft.com/campaigns/iot-edge/
https://docs.microsoft.com/azure/iot-edge/module-composition
https://docs.microsoft.com/stream-analytics-query/reference-data-join-azure-stream-analytics

License and third-party notices

Azure Stream Analytics module image information

3. Have a reference data file ready on the device. For a Windows container, put the reference data file on the
local drive and share the local drive with the Docker container. For a Linux container, create a Docker
volume and populate the data file to the volume.

4. Set the file path. For Windows Host OS and Windows container, use the absolute path:
E:\<PathToFile>\v1.csv . For a Windows Host OS and Linux container or a Linux OS and Linux container,

use the path in the volume: <VolumeName>/file1.txt .

The reference data on IoT Edge update is triggered by a deployment. Once triggered, the ASA module picks the
updated data without stopping the running job.

There are two ways to update the reference data:

Update reference data path in your ASA job from Azure portal.
Update the IoT Edge deployment.

Azure Stream Analytics on IoT Edge license.
Third-party notice for Azure Stream Analytics on IoT Edge.

This version information was last updated on 2019-06-27:

Image: mcr.microsoft.com/azure-stream-analytics/azureiotedge:1.0.5-linux-amd64

base image: microsoft/dotnet:2.1.6-runtime-alpine3.7
platform:

architecture: amd64
os: linux

Image: mcr.microsoft.com/azure-stream-analytics/azureiotedge:1.0.5-linux-arm32v7

base image: microsoft/dotnet:2.1.6-runtime-bionic-arm32v7
platform:

architecture: arm

https://go.microsoft.com/fwlink/?linkid=862827
https://go.microsoft.com/fwlink/?linkid=862828

Get help

Next steps

os: linux
Image: mcr.microsoft.com/azure-stream-analytics/azureiotedge:1.0.5-windows-amd64

base image: microsoft/dotnet:2.1.6-runtime-nanoserver-1809
platform:

architecture: amd64
os: windows

For further assistance, try the Azure Stream Analytics forum.

More information on Azure Iot Edge
ASA on IoT Edge tutorial
Develop Stream Analytics Edge jobs using Visual Studio tools
Implement CI/CD for Stream Analytics using APIs

https://social.msdn.microsoft.com/Forums/azure/home?forum=AzureStreamAnalytics
https://docs.microsoft.com/azure/iot-edge/how-iot-edge-works
https://docs.microsoft.com/azure/iot-edge/tutorial-deploy-stream-analytics
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio-edge-jobs

Build an IoT solution by using Stream Analytics
12 minutes to read • Edit Online

Introduction

Prerequisites

Scenario introduction: "Hello, Toll!"

Incoming data

In this solution, you learn how to use Azure Stream Analytics to get real-time insights from your data. Developers
can easily combine streams of data, such as click-streams, logs, and device-generated events, with historical
records or reference data to derive business insights. As a fully managed, real-time stream computation service
that's hosted in Microsoft Azure, Azure Stream Analytics provides built-in resiliency, low latency, and scalability to
get you up and running in minutes.

After completing this solution, you are able to:

Familiarize yourself with the Azure Stream Analytics portal.
Configure and deploy a streaming job.
Articulate real-world problems and solve them by using the Stream Analytics query language.
Develop streaming solutions for your customers by using Stream Analytics with confidence.
Use the monitoring and logging experience to troubleshoot issues.

You need the following prerequisites to complete this solution:

An Azure subscription

A toll station is a common phenomenon. You encounter them on many expressways, bridges, and tunnels across
the world. Each toll station has multiple toll booths. At manual booths, you stop to pay the toll to an attendant. At
automated booths, a sensor on top of each booth scans an RFID card that's affixed to the windshield of your
vehicle as you pass the toll booth. It is easy to visualize the passage of vehicles through these toll stations as an
event stream over which interesting operations can be performed.

This solution works with two streams of data. Sensors installed in the entrance and exit of the toll stations produce

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-build-an-iot-solution-using-stream-analytics.md
https://azure.microsoft.com/pricing/free-trial/

Entry data streamEntry data stream

TOLLID
ENTRYTI
ME

LICENSEP
LATE STATE MAKE MODEL

VEHICLET
YPE

VEHICLE
WEIGHT TOLL TAG

1 2014-
09-10
12:01:00
.000

JNB
7001

NY Honda CRV 1 0 7

1 2014-
09-10
12:02:00
.000

YXZ
1001

NY Toyota Camry 1 0 4 123456
789

3 2014-
09-10
12:02:00
.000

ABC
1004

CT Ford Taurus 1 0 5 456789
123

2 2014-
09-10
12:03:00
.000

XYZ
1003

CT Toyota Corolla 1 0 4

1 2014-
09-10
12:03:00
.000

BNJ
1007

NY Honda CRV 1 0 5 789123
456

2 2014-
09-10
12:05:00
.000

CDE
1007

NJ Toyota 4x4 1 0 6 321987
654

COLUMN DESCRIPTION

TollID The toll booth ID that uniquely identifies a toll booth

EntryTime The date and time of entry of the vehicle to the toll booth in
UTC

LicensePlate The license plate number of the vehicle

State A state in United States

Make The manufacturer of the automobile

Model The model number of the automobile

VehicleType Either 1 for passenger vehicles or 2 for commercial vehicles

the first stream. The second stream is a static lookup dataset that has vehicle registration data.

The entry data stream contains information about cars as they enter toll stations. The exit data events are live
streamed into an Event Hub queue from a Web App included in the sample app.

Here is a short description of the columns:

WeightType Vehicle weight in tons; 0 for passenger vehicles

Toll The toll value in USD

Tag The e-Tag on the automobile that automates payment; blank
where the payment was done manually

COLUMN DESCRIPTION

Exit data streamExit data stream

TOLLID EXITTIME LICENSEPLATE

1 2014-09-10T12:03:00.0000000Z JNB 7001

1 2014-09-10T12:03:00.0000000Z YXZ 1001

3 2014-09-10T12:04:00.0000000Z ABC 1004

2 2014-09-10T12:07:00.0000000Z XYZ 1003

1 2014-09-10T12:08:00.0000000Z BNJ 1007

2 2014-09-10T12:07:00.0000000Z CDE 1007

COLUMN DESCRIPTION

TollID The toll booth ID that uniquely identifies a toll booth

ExitTime The date and time of exit of the vehicle from toll booth in UTC

LicensePlate The license plate number of the vehicle

Commercial vehicle registration dataCommercial vehicle registration data

LICENSEPLATE REGISTRATIONID EXPIRED

SVT 6023 285429838 1

XLZ 3463 362715656 0

BAC 1005 876133137 1

RIV 8632 992711956 0

SNY 7188 592133890 0

The exit data stream contains information about cars leaving the toll station. The exit data events are live streamed
into an Event Hub queue from a Web App included in the sample app.

Here is a short description of the columns:

The solution uses a static snapshot of a commercial vehicle registration database. This data is saved as a JSON file
into Azure blob storage, included in the sample.

ELH 9896 678427724 1

LICENSEPLATE REGISTRATIONID EXPIRED

COLUMN DESCRIPTION

LicensePlate The license plate number of the vehicle

RegistrationId The vehicle's registration ID

Expired The registration status of the vehicle: 0 if vehicle registration is
active, 1 if registration is expired

Set up the environment for Azure Stream Analytics

Deploy the sample

Deploy the TollApp template in the Azure portalDeploy the TollApp template in the Azure portal

Review the Azure Stream Analytics TollApp resourcesReview the Azure Stream Analytics TollApp resources

Here is a short description of the columns:

To complete this solution, you need a Microsoft Azure subscription. If you do not have an Azure account, you can
request a free trial version.

Be sure to follow the steps in the "Clean up your Azure account" section at the end of this article so that you can
make the best use of your Azure credit.

There are several resources that can easily be deployed in a resource group together with a few clicks. The solution
definition is hosted in GitHub repository at https://github.com/Azure/azure-stream-
analytics/tree/master/Samples/TollApp.

1. To deploy the TollApp environment to Azure, use this link to Deploy TollApp Azure Template.

2. Sign in to the Azure portal if prompted.

3. Choose the subscription in which the various resources are billed.

4. Specify a new resource group, with a unique name, for example MyTollBooth .

5. Select an Azure location.

6. Specify an Interval as a number of seconds. This value is used in the sample web app, for how frequently to
send data into Event Hub.

7. Check to agree to the terms and conditions.

8. Select Pin to dashboard so that you can easily locate the resources later on.

9. Select Purchase to deploy the sample template.

10. After a few moments, a notification appears to confirm the Deployment succeeded.

1. Sign in to the Azure portal

2. Locate the Resource Group that you named in the previous section.

3. Verify that the following resources are listed in the resource group:

https://azure.microsoft.com/pricing/free-trial/
https://github.com/azure/azure-stream-analytics/tree/master/samples/tollapp
https://portal.azure.com/#create/microsoft.template/uri/https%3a%2f%2fraw.githubusercontent.com%2fazure%2fazure-stream-analytics%2fmaster%2fsamples%2ftollapp%2fvsprojects%2ftollappdeployment%2fazuredeploy.json

Examine the sample TollApp job

Start the TollApp streaming job

Review the CosmosDB output data

One Cosmos DB Account
One Azure Stream Analytics Job
One Azure Storage Account
One Azure Event Hub
Two Web Apps

SELECT TollId, System.Timestamp AS WindowEnd, COUNT(*) AS Count
INTO CosmosDB
FROM EntryStream TIMESTAMP BY EntryTime
GROUP BY TUMBLINGWINDOW(minute, 3), TollId

1. Starting from the resource group in the previous section, select the Stream Analytics streaming job starting
with the name tollapp (name contains random characters for uniqueness).

2. On the Overview page of the job, notice the Query box to view the query syntax.

To paraphrase the intent of the query, let’s say that you need to count the number of vehicles that enter a toll
booth. Because a highway toll booth has a continuous stream of vehicles entering, those are entrance events
are analogous to a stream that never stops. To quantify the stream, you have to define a "period of time" to
measure over. Let's refine the question further, to "How many vehicles enter a toll booth every three
minutes?" This is commonly referred to as the tumbling count.

As you can see, Azure Stream Analytics uses a query language that's like SQL and adds a few extensions to
specify time-related aspects of the query. For more details, read about Time Management and Windowing
constructs used in the query.

3. Examine the Inputs of the TollApp sample job. Only the EntryStream input is used in the current query.

EntryStream input is an Event Hub connection that queues data representing each time a car enters a
tollbooth on the highway. A web app that is part of the sample is creating the events, and that data is
queued in this Event Hub. Note that this input is queried in the FROM clause of the streaming query.
ExitStream input is an Event Hub connection that queues data representing each time a car exits a
tollbooth on the highway. This streaming input is used in later variations of the query syntax.
Registration input is an Azure Blob storage connection, pointing to a static registration.json file, used for
lookups as needed. This reference data input is used in later variations of the query syntax.

4. Examine the Outputs of the TollApp sample job.

Cosmos DB output is a Cosmos database container that receives the output sink events. Note that this
output is used in INTO clause of the streaming query.

Follow these steps to start the streaming job:

1. On the Overview page of the job, select Start.

2. On the Start job pane, select Now.

3. After a few moments, once the job is running, on the Overview page of the streaming job, view the
Monitoring graph. The graph should show several thousand input events, and tens of output events.

https://docs.microsoft.com/stream-analytics-query/time-management-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/windowing-azure-stream-analytics

Report total time for each car

SELECT EntryStream.TollId, EntryStream.EntryTime, ExitStream.ExitTime, EntryStream.LicensePlate, DATEDIFF
(minute, EntryStream.EntryTime, ExitStream.ExitTime) AS DurationInMinutes
INTO CosmosDB
FROM EntryStream TIMESTAMP BY EntryTime
JOIN ExitStream TIMESTAMP BY ExitTime
ON (EntryStream.TollId= ExitStream.TollId AND EntryStream.LicensePlate = ExitStream.LicensePlate)
AND DATEDIFF (minute, EntryStream, ExitStream) BETWEEN 0 AND 15

To update the TollApp streaming job query syntax:To update the TollApp streaming job query syntax:

Review the total time in the outputReview the total time in the output

1. Locate the resource group that contains the TollApp resources.

2. Select the Azure Cosmos DB Account with the name pattern tollapp<random>-cosmos.

3. Select the Data Explorer heading to open the Data Explorer page.

4. Expand the tollAppDatabase > tollAppCollection > Documents.

5. In the list of ids, several docs are shown once the output is available.

6. Select each id to review the JSON document. Notice each tollid, windowend time, and the count of cars
from that window.

7. After an additional three minutes, another set of four documents is available, one document per tollid.

The average time that's required for a car to pass through the toll helps to assess the efficiency of the process and
the customer experience.

To find the total time, join the EntryTime stream with the ExitTime stream. Join the two input streams on the equal
matching TollId and LicencePlate columns. The JOIN operator requires you to specify temporal leeway that
describes the acceptable time difference between the joined events. Use the DATEDIFF function to specify that
events should be no more than 15 minutes from each other. Also apply the DATEDIFF function to exit and entry
times to compute the actual time that a car spends in the toll station. Note the difference of the use of DATEDIFF
when it's used in a SELECT statement rather than a JOIN condition.

1. On the Overview page of the job, select Stop.

2. Wait a few moments for the notification that the job has stopped.

3. Under the JOB TOPOLOGY heading, select < > Query

4. Paste the adjusted streaming SQL query.

5. Select Save to save the query. Confirm Yes to save the changes.

6. On the Overview page of the job, select Start.

7. On the Start job pane, select Now.

Repeat the steps in the preceding section to review the CosmosDB output data from the streaming job. Review the
latest JSON documents.

For example, this document shows an example car with a certain license plate, the entrytime and exit time, and the
DATEDIFF calculated durationinminutes field showing the toll booth duration as two minutes:

{
 "tollid": 4,
 "entrytime": "2018-04-05T06:51:39.0491173Z",
 "exittime": "2018-04-05T06:53:09.0491173Z",
 "licenseplate": "JVR 9425",
 "durationinminutes": 2,
 "id": "ff52eb25-d580-7566-2879-1f52bba6601e",
 "_rid": "+8E4AI1DZgBjAAAAAAAAAA==",
 "_self": "dbs/+8E4AA==/colls/+8E4AI1DZgA=/docs/+8E4AI1DZgBjAAAAAAAAAA==/",
 "_etag": "\"ad02f6b8-0000-0000-0000-5ac5c8330000\"",
 "_attachments": "attachments/",
 "_ts": 1522911283
}

Report vehicles with expired registration

SELECT EntryStream.EntryTime, EntryStream.LicensePlate, EntryStream.TollId, Registration.RegistrationId
INTO CosmosDB
FROM EntryStream TIMESTAMP BY EntryTime
JOIN Registration
ON EntryStream.LicensePlate = Registration.LicensePlate
WHERE Registration.Expired = '1'

 {
 "entrytime": "2018-04-05T08:01:28.0252168Z",
 "licenseplate": "GMT 3221",
 "tollid": 1,
 "registrationid": "763220582",
 "id": "47db0535-9716-4eb2-db58-de7886966cbf",
 "_rid": "y+F8AJ9QWACSAQAAAAAAAA==",
 "_self": "dbs/y+F8AA==/colls/y+F8AJ9QWAA=/docs/y+F8AJ9QWACSAQAAAAAAAA==/",
 "_etag": "\"88007d8d-0000-0000-0000-5ac5d7e20000\"",
 "_attachments": "attachments/",
 "_ts": 1522915298
 }

Scale out the job

Azure Stream Analytics can use static snapshots of reference data to join with temporal data streams. To
demonstrate this capability, use the following sample question. The Registration input is a static blob json file that
lists the expirations of license tags. By joining on the license plate, the reference data is compared to each vehicle
passing through the toll both.

If a commercial vehicle is registered with the toll company, it can pass through the toll booth without being
stopped for inspection. Use the registration lookup table to identify all commercial vehicles that have expired
registrations.

1. Repeat the steps in the preceding section to update the TollApp streaming job query syntax.

2. Repeat the steps in the preceding section to review the CosmosDB output data from the streaming job.

Example output:

Azure Stream Analytics is designed to elastically scale so that it can handle large volumes of data. The Azure
Stream Analytics query can use a PARTITION BY clause to tell the system that this step scales out. PartitionId is
a special column that the system adds to match the partition ID of the input (event hub).

To scale out the query to partitions, edit the query syntax to the following code:

SELECT TollId, System.Timestamp AS WindowEnd, COUNT(*)AS Count
INTO CosmosDB
FROM EntryStream
TIMESTAMP BY EntryTime
PARTITION BY PartitionId
GROUP BY TUMBLINGWINDOW(minute,3), TollId, PartitionId

Monitor the job

Clean up the TollApp resources

Conclusion

To scale up the streaming job to more streaming units:

1. Stop the current job.

2. Update the query syntax in the < > Query page, and save the changes.

3. Under the CONFIGURE heading on the streaming job, select Scale.

4. Slide the Streaming units slider from 1 to 6. Streaming units define the amount of compute power that the
job can receive. Select Save.

5. Start the streaming job to demonstrate the additional scale. Azure Stream Analytics distributes work across
more compute resources and achieve better throughput, partitioning the work across resources using the
column designated in the PARTITION BY clause.

The MONITOR area contains statistics about the running job. First-time configuration is needed to use the
storage account in the same region (name toll like the rest of this document).

You can access Activity Logs from the job dashboard Settings area as well.

1. Stop the Stream Analytics job in the Azure portal.

2. Locate the resource group that contains eight resources related to the TollApp template.

3. Select Delete resource group. Type the name of the resource group to confirm deletion.

This solution introduced you to the Azure Stream Analytics service. It demonstrated how to configure inputs and

outputs for the Stream Analytics job. Using the Toll Data scenario, the solution explained common types of
problems that arise in the space of data in motion and how they can be solved with simple SQL-like queries in
Azure Stream Analytics. The solution described SQL extension constructs for working with temporal data. It
showed how to join data streams, how to enrich the data stream with static reference data, and how to scale out a
query to achieve higher throughput.

Although this solution provides a good introduction, it is not complete by any means. You can find more query
patterns using the SAQL language at Query examples for common Stream Analytics usage patterns.

Azure Stream Analytics JavaScript user-defined
aggregates
5 minutes to read • Edit Online

JavaScript user-defined aggregates

AccumulateOnly aggregatesAccumulateOnly aggregates

// Sample UDA which state can only be accumulated.
function main() {
 this.init = function () {
 this.state = 0;
 }

 this.accumulate = function (value, timestamp) {
 this.state += value;
 }

 this.computeResult = function () {
 return this.state;
 }
}

AccumulateDeaccumulate aggregatesAccumulateDeaccumulate aggregates

Azure Stream Analytics supports user-defined aggregates (UDA) written in JavaScript, it enables you to implement
complex stateful business logic. Within UDA you have full control of the state data structure, state accumulation,
state decumulation, and aggregate result computation. The article introduces the two different JavaScript UDA
interfaces, steps to create a UDA, and how to use UDA with window-based operations in Stream Analytics query.

A user-defined aggregate is used on top of a time window specification to aggregate over the events in that
window and produce a single result value. There are two types of UDA interfaces that Stream Analytics supports
today, AccumulateOnly and AccumulateDeaccumulate. Both types of UDA can be used by Tumbling, Hopping,
Sliding and Session Window. AccumulateDeaccumulate UDA performs better than AccumulateOnly UDA when
used together with Hopping, Sliding and Session Window. You choose one of the two types based on the
algorithm you use.

AccumulateOnly aggregates can only accumulate new events to its state, the algorithm does not allow
deaccumulation of values. Choose this aggregate type when deaccumulate an event information from the state
value is impossible to implement. Following is the JavaScript template for AccumulatOnly aggregates:

AccumulateDeaccumulate aggregates allow deaccumulation of a previous accumulated value from the state, for
example, remove a key-value pair from a list of event values, or subtract a value from a state of sum aggregate.
Following is the JavaScript template for AccumulateDeaccumulate aggregates:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-javascript-user-defined-aggregates.md

// Sample UDA which state can be accumulated and deaccumulated.
function main() {
 this.init = function () {
 this.state = 0;
 }

 this.accumulate = function (value, timestamp) {
 this.state += value;
 }

 this.deaccumulate = function (value, timestamp) {
 this.state -= value;
 }

 this.deaccumulateState = function (otherState){
 this.state -= otherState.state;
 }

 this.computeResult = function () {
 return this.state;
 }
}

UDA - JavaScript function declaration

Function aliasFunction alias

Function typeFunction type

Output typeOutput type

Function nameFunction name

Method - init()Method - init()

Method – accumulate()Method – accumulate()

Method – deaccumulate()Method – deaccumulate()

Method – deaccumulateState()Method – deaccumulateState()

Method – computeResult()Method – computeResult()

Each JavaScript UDA is defined by a Function object declaration. Following are the major elements in a UDA
definition.

Function alias is the UDA identifier. When called in Stream Analytics query, always use UDA alias together with a
"uda." prefix.

For UDA, the function type should be Javascript UDA.

A specific type that Stream Analytics job supported, or "Any" if you want to handle the type in your query.

The name of this Function object. The function name should match the UDA alias.

The init() method initializes state of the aggregate. This method is called when window starts.

The accumulate() method calculates the UDA state based on the previous state and the current event values. This
method is called when an event enters a time window (TUMBLINGWINDOW, HOPPINGWINDOW,
SLIDINGWINDOW or SESSIONWINDOW).

The deaccumulate() method recalculates state based on the previous state and the current event values. This
method is called when an event leaves a SLIDINGWINDOW or SESSIONWINDOW.

The deaccumulateState() method recalculates state based on the previous state and the state of a hop. This method
is called when a set of events leave a HOPPINGWINDOW.

JavaScript UDA supported input and output data types

Adding a JavaScript UDA from the Azure portal

The computeResult() method returns aggregate result based on the current state. This method is called at the end
of a time window (TUMBLINGWINDOW, HOPPINGWINDOW, SLIDINGWINDOW or SESSIONWINDOW).

For JavaScript UDA data types, refer to section Stream Analytics and JavaScript type conversion of Integrate
JavaScript UDFs.

Below we walk through the process of creating a UDA from Portal. The example we use here is computing time
weighted averages.

Now let's create a JavaScript UDA under an existing ASA job by following steps.

// Sample UDA which calculate Time-Weighted Average of incoming values.
function main() {
 this.init = function () {
 this.totalValue = 0.0;
 this.totalWeight = 0.0;
 }

 this.accumulate = function (value, timestamp) {
 this.totalValue += value.level * value.weight;
 this.totalWeight += value.weight;

 }

 // Uncomment below for AccumulateDeaccumulate implementation
 /*
 this.deaccumulate = function (value, timestamp) {
 this.totalValue -= value.level * value.weight;
 this.totalWeight -= value.weight;
 }

 this.deaccumulateState = function (otherState){
 this.state -= otherState.state;
 this.totalValue -= otherState.totalValue;
 this.totalWeight -= otherState.totalWeight;
 }
 */

 this.computeResult = function () {
 if(this.totalValue == 0) {
 result = 0;
 }
 else {
 result = this.totalValue/this.totalWeight;
 }
 return result;
 }
}

1. Log on to Azure portal and locate your existing Stream Analytics job.

2. Then click on functions link under JOB TOPOLOGY .

3. Click on the Add icon to add a new function.

4. On the New Function view, select JavaScript UDA as the Function Type, then you see a default UDA
template show up in the editor.

5. Fill in "TWA" as the UDA alias and change the function implementation as the following:

Calling JavaScript UDA in ASA query

WITH value AS
(
 SELECT
 NoiseLevelDB as level,
 DurationSecond as weight
FROM
 [YourInputAlias] TIMESTAMP BY EntryTime
)
SELECT
 System.Timestamp as ts,
 uda.TWA(value) as NoseDoseTWA
FROM value
GROUP BY TumblingWindow(minute, 5)

Testing query with UDA

[
 {"EntryTime": "2017-06-10T05:01:00-07:00", "NoiseLevelDB": 80, "DurationSecond": 22.0},
 {"EntryTime": "2017-06-10T05:02:00-07:00", "NoiseLevelDB": 81, "DurationSecond": 37.8},
 {"EntryTime": "2017-06-10T05:02:00-07:00", "NoiseLevelDB": 85, "DurationSecond": 26.3},
 {"EntryTime": "2017-06-10T05:03:00-07:00", "NoiseLevelDB": 95, "DurationSecond": 13.7},
 {"EntryTime": "2017-06-10T05:03:00-07:00", "NoiseLevelDB": 88, "DurationSecond": 10.3},
 {"EntryTime": "2017-06-10T05:05:00-07:00", "NoiseLevelDB": 103, "DurationSecond": 5.5},
 {"EntryTime": "2017-06-10T05:06:00-07:00", "NoiseLevelDB": 99, "DurationSecond": 23.0},
 {"EntryTime": "2017-06-10T05:07:00-07:00", "NoiseLevelDB": 108, "DurationSecond": 1.76},
 {"EntryTime": "2017-06-10T05:07:00-07:00", "NoiseLevelDB": 79, "DurationSecond": 17.9},
 {"EntryTime": "2017-06-10T05:08:00-07:00", "NoiseLevelDB": 83, "DurationSecond": 27.1},
 {"EntryTime": "2017-06-10T05:09:00-07:00", "NoiseLevelDB": 91, "DurationSecond": 17.1},
 {"EntryTime": "2017-06-10T05:09:00-07:00", "NoiseLevelDB": 115, "DurationSecond": 7.9},
 {"EntryTime": "2017-06-10T05:09:00-07:00", "NoiseLevelDB": 80, "DurationSecond": 28.3},
 {"EntryTime": "2017-06-10T05:10:00-07:00", "NoiseLevelDB": 55, "DurationSecond": 18.2},
 {"EntryTime": "2017-06-10T05:10:00-07:00", "NoiseLevelDB": 93, "DurationSecond": 25.8},
 {"EntryTime": "2017-06-10T05:11:00-07:00", "NoiseLevelDB": 83, "DurationSecond": 11.4},
 {"EntryTime": "2017-06-10T05:12:00-07:00", "NoiseLevelDB": 89, "DurationSecond": 7.9},
 {"EntryTime": "2017-06-10T05:15:00-07:00", "NoiseLevelDB": 112, "DurationSecond": 3.7},
 {"EntryTime": "2017-06-10T05:15:00-07:00", "NoiseLevelDB": 93, "DurationSecond": 9.7},
 {"EntryTime": "2017-06-10T05:18:00-07:00", "NoiseLevelDB": 96, "DurationSecond": 3.7},
 {"EntryTime": "2017-06-10T05:20:00-07:00", "NoiseLevelDB": 108, "DurationSecond": 0.99},
 {"EntryTime": "2017-06-10T05:20:00-07:00", "NoiseLevelDB": 113, "DurationSecond": 25.1},
 {"EntryTime": "2017-06-10T05:22:00-07:00", "NoiseLevelDB": 110, "DurationSecond": 5.3}
]

Get help

Next steps

6. Once you click the "Save" button, your UDA shows up on the function list.

7. Click on the new function "TWA", you can check the function definition.

In Azure portal and open your job, edit the query and call TWA() function with a mandate prefix "uda.". For
example:

Create a local JSON file with below content, upload the file to Stream Analytics job, and test above query.

For additional help, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics query language reference
Azure Stream Analytics management REST API reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

High-frequency trading simulation with Stream
Analytics
12 minutes to read • Edit Online

High-frequency trading

Real-time quote feedReal-time quote feed

using Quobject.SocketIoClientDotNet.Client;
using Microsoft.ServiceBus.Messaging;
var symbols = "msft,fb,amzn,goog";
var eventHubClient = EventHubClient.CreateFromConnectionString(connectionString, eventHubName);
var socket = IO.Socket("https://ws-api.iextrading.com/1.0/tops");
socket.On(Socket.EVENT_MESSAGE, (message) =>
{
 eventHubClient.Send(new EventData(Encoding.UTF8.GetBytes((string)message)));
});
socket.On(Socket.EVENT_CONNECT, () =>
{
 socket.Emit("subscribe", symbols);
});

The combination of SQL language and JavaScript user-defined functions (UDFs) and user-defined aggregates
(UDAs) in Azure Stream Analytics enables users to perform advanced analytics. Advanced analytics might include
online machine learning training and scoring, as well as stateful process simulation. This article describes how to
perform linear regression in an Azure Stream Analytics job that does continuous training and scoring in a high-
frequency trading scenario.

The logical flow of high-frequency trading is about:

1. Getting real-time quotes from a security exchange.
2. Building a predictive model around the quotes, so we can anticipate the price movement.
3. Placing buy or sell orders to make money from the successful prediction of the price movements.

As a result, we need:

A real-time quote feed.
A predictive model that can operate on the real-time quotes.
A trading simulation that demonstrates the profit or loss of the trading algorithm.

IEX offers free real-time bid and ask quotes by using socket.io. A simple console program can be written to receive
real-time quotes and push to Azure Event Hubs as a data source. The following code is a skeleton of the program.
The code omits error handling for brevity. You also need to include SocketIoClientDotNet and
WindowsAzure.ServiceBus NuGet packages in your project.

Here are some generated sample events:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-high-frequency-trading.md
https://iextrading.com/developer/docs/#websockets

{"symbol":"MSFT","marketPercent":0.03246,"bidSize":100,"bidPrice":74.8,"askSize":300,"askPrice":74.83,volume":
70572,"lastSalePrice":74.825,"lastSaleSize":100,"lastSaleTime":1506953355123,lastUpdated":1506953357170,"secto
r":"softwareservices","securityType":"commonstock"}
{"symbol":"GOOG","marketPercent":0.04825,"bidSize":114,"bidPrice":870,"askSize":0,"askPrice":0,volume":11240,"
lastSalePrice":959.47,"lastSaleSize":60,"lastSaleTime":1506953317571,lastUpdated":1506953357633,"sector":"soft
wareservices","securityType":"commonstock"}
{"symbol":"MSFT","marketPercent":0.03244,"bidSize":100,"bidPrice":74.8,"askSize":100,"askPrice":74.83,volume":
70572,"lastSalePrice":74.825,"lastSaleSize":100,"lastSaleTime":1506953355123,lastUpdated":1506953359118,"secto
r":"softwareservices","securityType":"commonstock"}
{"symbol":"FB","marketPercent":0.01211,"bidSize":100,"bidPrice":169.9,"askSize":100,"askPrice":170.67,volume":
39042,"lastSalePrice":170.67,"lastSaleSize":100,"lastSaleTime":1506953351912,lastUpdated":1506953359641,"secto
r":"softwareservices","securityType":"commonstock"}
{"symbol":"GOOG","marketPercent":0.04795,"bidSize":100,"bidPrice":959.19,"askSize":0,"askPrice":0,volume":1124
0,"lastSalePrice":959.47,"lastSaleSize":60,"lastSaleTime":1506953317571,lastUpdated":1506953360949,"sector":"s
oftwareservices","securityType":"commonstock"}
{"symbol":"FB","marketPercent":0.0121,"bidSize":100,"bidPrice":169.9,"askSize":100,"askPrice":170.7,volume":39
042,"lastSalePrice":170.67,"lastSaleSize":100,"lastSaleTime":1506953351912,lastUpdated":1506953362205,"sector"
:"softwareservices","securityType":"commonstock"}
{"symbol":"GOOG","marketPercent":0.04795,"bidSize":114,"bidPrice":870,"askSize":0,"askPrice":0,volume":11240,"
lastSalePrice":959.47,"lastSaleSize":60,"lastSaleTime":1506953317571,lastUpdated":1506953362629,"sector":"soft
wareservices","securityType":"commonstock"}

NOTENOTE

Predictive model for high-frequency tradingPredictive model for high-frequency trading

The time stamp of the event is lastUpdated, in epoch time.

For the purpose of demonstration, we use a linear model described by Darryl Shen in his paper.

Volume order imbalance (VOI) is a function of current bid/ask price and volume, and bid/ask price and volume
from the last tick. The paper identifies the correlation between VOI and future price movement. It builds a linear
model between the past 5 VOI values and the price change in the next 10 ticks. The model is trained by using
previous day's data with linear regression.

The trained model is then used to make price change predictions on quotes in the current trading day in real time.
When a large enough price change is predicted, a trade is executed. Depending on the threshold setting, thousands
of trades can be expected for a single stock during a trading day.

Now, let's express the training and prediction operations in an Azure Stream Analytics job.

First, the inputs are cleaned up. Epoch time is converted to datetime via DATEADD . TRY_CAST is used to coerce
data types without failing the query. It's always a good practice to cast input fields to the expected data types, so
there is no unexpected behavior in manipulation or comparison of the fields.

https://docplayer.net/23038840-order-imbalance-based-strategy-in-high-frequency-trading.html

WITH
typeconvertedquotes AS (
 /* convert all input fields to proper types */
 SELECT
 System.Timestamp AS lastUpdated,
 symbol,
 DATEADD(millisecond, CAST(lastSaleTime as bigint), '1970-01-01T00:00:00Z') AS lastSaleTime,
 TRY_CAST(bidSize as bigint) AS bidSize,
 TRY_CAST(bidPrice as float) AS bidPrice,
 TRY_CAST(askSize as bigint) AS askSize,
 TRY_CAST(askPrice as float) AS askPrice,
 TRY_CAST(volume as bigint) AS volume,
 TRY_CAST(lastSaleSize as bigint) AS lastSaleSize,
 TRY_CAST(lastSalePrice as float) AS lastSalePrice
 FROM quotes TIMESTAMP BY DATEADD(millisecond, CAST(lastUpdated as bigint), '1970-01-01T00:00:00Z')
),
timefilteredquotes AS (
 /* filter between 7am and 1pm PST, 14:00 to 20:00 UTC */
 /* clean up invalid data points */
 SELECT * FROM typeconvertedquotes
 WHERE DATEPART(hour, lastUpdated) >= 14 AND DATEPART(hour, lastUpdated) < 20 AND bidSize > 0 AND askSize > 0
AND bidPrice > 0 AND askPrice > 0
),

shiftedquotes AS (
 /* get previous bid/ask price and size in order to calculate VOI */
 SELECT
 symbol,
 (bidPrice + askPrice)/2 AS midPrice,
 bidPrice,
 bidSize,
 askPrice,
 askSize,
 LAG(bidPrice) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS bidPricePrev,
 LAG(bidSize) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS bidSizePrev,
 LAG(askPrice) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS askPricePrev,
 LAG(askSize) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS askSizePrev
 FROM timefilteredquotes
),

Next, we use the LAG function to get values from the last tick. One hour of LIMIT DURATION value is arbitrarily
chosen. Given the quote frequency, it's safe to assume that you can find the previous tick by looking back one hour.

We can then compute VOI value. We filter out the null values if the previous tick doesn't exist, just in case.

currentPriceAndVOI AS (
 /* calculate VOI */
 SELECT
 symbol,
 midPrice,
 (CASE WHEN (bidPrice < bidPricePrev) THEN 0
 ELSE (CASE WHEN (bidPrice = bidPricePrev) THEN (bidSize - bidSizePrev) ELSE bidSize END)
 END) -
 (CASE WHEN (askPrice < askPricePrev) THEN askSize
 ELSE (CASE WHEN (askPrice = askPricePrev) THEN (askSize - askSizePrev) ELSE 0 END)
 END) AS VOI
 FROM shiftedquotes
 WHERE
 bidPrice IS NOT NULL AND
 bidSize IS NOT NULL AND
 askPrice IS NOT NULL AND
 askSize IS NOT NULL AND
 bidPricePrev IS NOT NULL AND
 bidSizePrev IS NOT NULL AND
 askPricePrev IS NOT NULL AND
 askSizePrev IS NOT NULL
),

shiftedPriceAndShiftedVOI AS (
 /* get 10 future prices and 2 previous VOIs */
 SELECT
 symbol,
 midPrice AS midPrice10,
 LAG(midPrice, 1) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice9,
 LAG(midPrice, 2) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice8,
 LAG(midPrice, 3) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice7,
 LAG(midPrice, 4) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice6,
 LAG(midPrice, 5) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice5,
 LAG(midPrice, 6) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice4,
 LAG(midPrice, 7) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice3,
 LAG(midPrice, 8) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice2,
 LAG(midPrice, 9) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice1,
 LAG(midPrice, 10) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS midPrice,
 LAG(VOI, 10) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS VOI1,
 LAG(VOI, 11) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS VOI2
 FROM currentPriceAndVOI
),

Now, we use LAG again to create a sequence with 2 consecutive VOI values, followed by 10 consecutive mid-price
values.

We then reshape the data into inputs for a two-variable linear model. Again, we filter out the events where we
don't have all the data.

modelInput AS (
 /* create feature vector, x being VOI, y being delta price */
 SELECT
 symbol,
 (midPrice1 + midPrice2 + midPrice3 + midPrice4 + midPrice5 + midPrice6 + midPrice7 + midPrice8 + midPrice9 +
midPrice10)/10.0 - midPrice AS y,
 VOI1 AS x1,
 VOI2 AS x2
 FROM shiftedPriceAndShiftedVOI
 WHERE
 midPrice1 IS NOT NULL AND
 midPrice2 IS NOT NULL AND
 midPrice3 IS NOT NULL AND
 midPrice4 IS NOT NULL AND
 midPrice5 IS NOT NULL AND
 midPrice6 IS NOT NULL AND
 midPrice7 IS NOT NULL AND
 midPrice8 IS NOT NULL AND
 midPrice9 IS NOT NULL AND
 midPrice10 IS NOT NULL AND
 midPrice IS NOT NULL AND
 VOI1 IS NOT NULL AND
 VOI2 IS NOT NULL
),

Because Azure Stream Analytics doesn't have a built-in linear regression function, we use SUM and AVG
aggregates to compute the coefficients for the linear model.

modelagg AS (
 /* get aggregates for linear regression calculation,
 http://faculty.cas.usf.edu/mbrannick/regression/Reg2IV.html */
 SELECT
 symbol,
 SUM(x1 * x1) AS x1x1,
 SUM(x2 * x2) AS x2x2,
 SUM(x1 * y) AS x1y,
 SUM(x2 * y) AS x2y,
 SUM(x1 * x2) AS x1x2,
 AVG(y) AS avgy,
 AVG(x1) AS avgx1,
 AVG(x2) AS avgx2
 FROM modelInput
 GROUP BY symbol, TumblingWindow(hour, 24, -4)
),
modelparambs AS (
 /* calculate b1 and b2 for the linear model */
 SELECT
 symbol,
 (x2x2 * x1y - x1x2 * x2y)/(x1x1 * x2x2 - x1x2 * x1x2) AS b1,
 (x1x1 * x2y - x1x2 * x1y)/(x1x1 * x2x2 - x1x2 * x1x2) AS b2,
 avgy,
 avgx1,
 avgx2
 FROM modelagg
),
model AS (
 /* calculate a for the linear model */
 SELECT
 symbol,
 avgy - b1 * avgx1 - b2 * avgx2 AS a,
 b1,
 b2
 FROM modelparambs
),

To use the previous day's model for current event's scoring, we want to join the quotes with the model. But instead
of using JOIN , we UNION the model events and quote events. Then we use LAG to pair the events with previous
day's model, so we can get exactly one match. Because of the weekend, we have to look back three days. If we used
a straightforward JOIN , we would get three models for every quote event.

shiftedVOI AS (
 /* get two consecutive VOIs */
 SELECT
 symbol,
 midPrice,
 VOI AS VOI1,
 LAG(VOI, 1) OVER (PARTITION BY symbol LIMIT DURATION(hour, 1)) AS VOI2
 FROM currentPriceAndVOI
),
VOIAndModel AS (
 /* combine VOIs and models */
 SELECT
 'voi' AS type,
 symbol,
 midPrice,
 VOI1,
 VOI2,
 0.0 AS a,
 0.0 AS b1,
 0.0 AS b2
 FROM shiftedVOI
 UNION
 SELECT
 'model' AS type,
 symbol,
 0.0 AS midPrice,
 0 AS VOI1,
 0 AS VOI2,
 a,
 b1,
 b2
 FROM model
),
VOIANDModelJoined AS (
 /* match VOIs with the latest model within 3 days (72 hours, to take the weekend into account) */
 SELECT
 symbol,
 midPrice,
 VOI1 as x1,
 VOI2 as x2,
 LAG(a, 1) OVER (PARTITION BY symbol LIMIT DURATION(hour, 72) WHEN type = 'model') AS a,
 LAG(b1, 1) OVER (PARTITION BY symbol LIMIT DURATION(hour, 72) WHEN type = 'model') AS b1,
 LAG(b2, 1) OVER (PARTITION BY symbol LIMIT DURATION(hour, 72) WHEN type = 'model') AS b2
 FROM VOIAndModel
 WHERE type = 'voi'
),

Now, we can make predictions and generate buy/sell signals based on the model, with a 0.02 threshold value. A
trade value of 10 is buy. A trade value of -10 is sell.

prediction AS (
 /* make prediction if there is a model */
 SELECT
 symbol,
 midPrice,
 a + b1 * x1 + b2 * x2 AS efpc
 FROM VOIANDModelJoined
 WHERE
 a IS NOT NULL AND
 b1 IS NOT NULL AND
 b2 IS NOT NULL AND
 x1 IS NOT NULL AND
 x2 IS NOT NULL
),
tradeSignal AS (
 /* generate buy/sell signals */
 SELECT
 DateAdd(hour, -7, System.Timestamp) AS time,
 symbol,
 midPrice,
 efpc,
 CASE WHEN (efpc > 0.02) THEN 10 ELSE (CASE WHEN (efpc < -0.02) THEN -10 ELSE 0 END) END AS trade,
 DATETIMEFROMPARTS(DATEPART(year, System.Timestamp), DATEPART(month, System.Timestamp), DATEPART(day,
System.Timestamp), 0, 0, 0, 0) as date
 FROM prediction
),

Trading simulationTrading simulation

simulation AS
(
 /* perform trade simulation for the past 7 hours to cover an entire trading day, and generate output every
minute */
 SELECT
 DateAdd(hour, -7, System.Timestamp) AS time,
 symbol,
 date,
 uda.TradeSimulation(tradeSignal) AS s
 FROM tradeSignal
 GROUP BY HoppingWindow(minute, 420, 1), symbol, date
 Having DateDiff(day, date, time) < 1 AND DATEPART(hour, time) < 13
)

function main() {

After we have the trading signals, we want to test how effective the trading strategy is, without trading for real.

We achieve this test by using a UDA, with a hopping window, hopping every one minute. The additional grouping
on date and the having clause allow the window only accounts for events that belong to the same day. For a
hopping window across two days, the GROUP BY date separates the grouping into previous day and current day.
The HAVING clause filters out the windows that are ending on the current day but grouping on the previous day.

The JavaScript UDA initializes all accumulators in the init function, computes the state transition with every
event added to the window, and returns the simulation results at the end of the window. The general trading
process is to:

Buy stock when a buy signal is received and there is no stocking holding.
Sell stock when a sell signal is received and there is stock holding.
Short if there is no stock holding.

If there's a short position, and a buy signal is received, we buy to cover. We never hold or short 10 shares of a stock
in this simulation. The transaction cost is a flat $8.

function main() {
 var TRADE_COST = 8.0;
 var SHARES = 10;
 this.init = function () {
 this.own = false;
 this.pos = 0;
 this.pnl = 0.0;
 this.tradeCosts = 0.0;
 this.buyPrice = 0.0;
 this.sellPrice = 0.0;
 this.buySize = 0;
 this.sellSize = 0;
 this.buyTotal = 0.0;
 this.sellTotal = 0.0;
 }
 this.accumulate = function (tradeSignal, timestamp) {
 if(!this.own && tradeSignal.trade == 10) {
 // Buy to open
 this.own = true;
 this.pos = 1;
 this.buyPrice = tradeSignal.midprice;
 this.tradeCosts += TRADE_COST;
 this.buySize += SHARES;
 this.buyTotal += SHARES * tradeSignal.midprice;
 } else if(!this.own && tradeSignal.trade == -10) {
 // Sell to open
 this.own = true;
 this.pos = -1
 this.sellPrice = tradeSignal.midprice;
 this.tradeCosts += TRADE_COST;
 this.sellSize += SHARES;
 this.sellTotal += SHARES * tradeSignal.midprice;
 } else if(this.own && this.pos == 1 && tradeSignal.trade == -10) {
 // Sell to close
 this.own = false;
 this.pos = 0;
 this.sellPrice = tradeSignal.midprice;
 this.tradeCosts += TRADE_COST;
 this.pnl += (this.sellPrice - this.buyPrice)*SHARES - 2*TRADE_COST;
 this.sellSize += SHARES;
 this.sellTotal += SHARES * tradeSignal.midprice;
 // Sell to open
 this.own = true;
 this.pos = -1;
 this.sellPrice = tradeSignal.midprice;
 this.tradeCosts += TRADE_COST;
 this.sellSize += SHARES;
 this.sellTotal += SHARES * tradeSignal.midprice;
 } else if(this.own && this.pos == -1 && tradeSignal.trade == 10) {
 // Buy to close
 this.own = false;
 this.pos = 0;
 this.buyPrice = tradeSignal.midprice;
 this.tradeCosts += TRADE_COST;
 this.pnl += (this.sellPrice - this.buyPrice)*SHARES - 2*TRADE_COST;
 this.buySize += SHARES;
 this.buyTotal += SHARES * tradeSignal.midprice;
 // Buy to open
 this.own = true;
 this.pos = 1;
 this.buyPrice = tradeSignal.midprice;
 this.tradeCosts += TRADE_COST;
 this.buySize += SHARES;
 this.buyTotal += SHARES * tradeSignal.midprice;
 }
 }
 this.computeResult = function () {
 var result = {
 "pnl": this.pnl,
 "buySize": this.buySize,

 "buySize": this.buySize,
 "sellSize": this.sellSize,
 "buyTotal": this.buyTotal,
 "sellTotal": this.sellTotal,
 "tradeCost": this.tradeCost
 };
 return result;
 }
}

SELECT * INTO tradeSignalDashboard FROM tradeSignal /* output tradeSignal to PBI */
SELECT
 symbol,
 time,
 date,
 TRY_CAST(s.pnl as float) AS pnl,
 TRY_CAST(s.buySize as bigint) AS buySize,
 TRY_CAST(s.sellSize as bigint) AS sellSize,
 TRY_CAST(s.buyTotal as float) AS buyTotal,
 TRY_CAST(s.sellTotal as float) AS sellTotal
 INTO pnlDashboard
FROM simulation /* output trade simulation to PBI */

Finally, we output to the Power BI dashboard for visualization.

Summary
We can implement a realistic high-frequency trading model with a moderately complex query in Azure Stream
Analytics. We have to simplify the model from five input variables to two, because of the lack of a built-in linear
regression function. But for a determined user, algorithms with higher dimensions and sophistication can possibly
be implemented as JavaScript UDA as well.

It's worth noting that most of the query, other than the JavaScript UDA, can be tested and debugged in Visual
Studio through Azure Stream Analytics tools for Visual Studio. After the initial query was written, the author spent
less than 30 minutes testing and debugging the query in Visual Studio.

Currently, the UDA cannot be debugged in Visual Studio. We are working on enabling that with the ability to step
through JavaScript code. In addition, note that the fields reaching the UDA have lowercase names. This was not an
obvious behavior during query testing. But with Azure Stream Analytics compatibility level 1.1, we preserve the
field name casing so the behavior is more natural.

I hope this article serves as an inspiration for all Azure Stream Analytics users, who can use our service to perform
advanced analytics in near real time, continuously. Let us know any feedback you have to make it easier to
implement queries for advanced analytics scenarios.

Process real-time IoT data streams with Azure Stream
Analytics
4 minutes to read • Edit Online

Prerequisites

Scenario

{
 "time": "2016-01-26T20:47:53.0000000",
 "dspl": "sensorE",
 "temp": 123,
 "hmdt": 34
}

Create a Stream Analytics job

In this article, you learn how to create stream-processing logic to gather data from Internet of Things (IoT) devices.
You use a real-world Internet of Things (IoT) use case to demonstrate how to build your solution quickly and
economically.

Create a free Azure subscription.
Download sample query and data files from GitHub.

Contoso, which is a company in the industrial automation space, has completely automated its manufacturing
process. The machinery in this plant has sensors that are capable of emitting streams of data in real time. In this
scenario, a production floor manager wants to have real-time insights from the sensor data to look for patterns and
take actions on them. You can use Stream Analytics Query Language (SAQL) over the sensor data to find
interesting patterns from the incoming stream of data.

In this example, the data is generated from a Texas Instruments sensor tag device. The payload of the data is in
JSON format and looks like the following:

In a real-world scenario, you could have hundreds of these sensors generating events as a stream. Ideally, a
gateway device would run code to push these events to Azure Event Hubs or Azure IoT Hubs. Your Stream
Analytics job would ingest these events from Event Hubs and run real-time analytics queries against the streams.
Then, you could send the results to one of the supported outputs.

For ease of use, this getting started guide provides a sample data file, which was captured from real sensor tag
devices. You can run queries on the sample data and see results. In subsequent tutorials, you will learn how to
connect your job to inputs and outputs and deploy them to the Azure service.

1. In the Azure portal, select + Create a resource from the left navigation menu. Then, select Stream
Analytics job from Analytics.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-get-started-with-azure-stream-analytics-to-process-data-from-iot-devices.md
https://azure.microsoft.com/pricing/free-trial/
https://aka.ms/azure-stream-analytics-get-started-iot
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/iot-hub/
https://portal.azure.com

2. Enter a unique job name and verify the subscription is the correct one for your job. Create a new resource
group or select an existing one from your subscription.

3. Select a location for your job. Use the same location for your resource group and all resources to increased
processing speed and reduced of costs. After you've made the configurations, select Create.

Create an Azure Stream Analytics query
The next step after your job is created is to write a query. You can test queries against sample data without
connecting an input or output to your job.

Download the HelloWorldASA-InputStream.json from GitHub. Then, navigate to your Azure Stream Analytics job
in the Azure portal.

Select Query under Job topology from the left menu. Then select Upload sample input. Upload the
HelloWorldASA-InputStream.json file, and select Ok.

https://github.com/azure/azure-stream-analytics/blob/master/samples/gettingstarted/helloworldasa-inputstream.json

Query: Archive your raw dataQuery: Archive your raw data

Notice that a preview of the data is automatically populated in the Input preview table.

The simplest form of query is a pass-through query that archives all input data to its designated output. This query
is the default query populated in a new Azure Stream Analytics job.

SELECT
 *
INTO
 Output
FROM
 InputStream

Query: Filter the data based on a conditionQuery: Filter the data based on a condition

SELECT
 time,
 dspl AS SensorName,
 temp AS Temperature,
 hmdt AS Humidity
INTO
 Output
FROM
 InputStream
WHERE dspl='sensorA'

Select Test query and view the results in the Test results table.

Let's try to filter the results based on a condition. We would like to show results for only those events that come
from "sensorA."

Paste the query in the editor and select Test query to review the results.

Query: Alert to trigger a business workflowQuery: Alert to trigger a business workflow

SELECT
 System.Timestamp AS OutputTime,
 dspl AS SensorName,
 Avg(temp) AS AvgTemperature
INTO
 Output
FROM
 InputStream TIMESTAMP BY time
GROUP BY TumblingWindow(second,30),dspl
HAVING Avg(temp)>100

Let's make our query more detailed. For every type of sensor, we want to monitor average temperature per 30-
second window and display results only if the average temperature is above 100 degrees.

Query: Detect absence of eventsQuery: Detect absence of events

SELECT
 t1.time,
 t1.dspl AS SensorName
INTO
 Output
FROM
 InputStream t1 TIMESTAMP BY time
LEFT OUTER JOIN InputStream t2 TIMESTAMP BY time
ON
 t1.dspl=t2.dspl AND
 DATEDIFF(second,t1,t2) BETWEEN 1 and 5
WHERE t2.dspl IS NULL

You should see results that contain only 245 rows and names of sensors where the average temperate is greater
than 100. This query groups the stream of events by dspl, which is the sensor name, over a Tumbling Window of
30 seconds. Temporal queries must state how you want time to progress. By using the TIMESTAMP BY clause,
you have specified the OUTPUTTIME column to associate times with all temporal calculations. For detailed
information, read about Time Management and Windowing functions.

How can we write a query to find a lack of input events? Let's find the last time that a sensor sent data and then did
not send events for the next 5 seconds.

https://docs.microsoft.com/stream-analytics-query/time-management-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/windowing-azure-stream-analytics

Conclusion

Here we use a LEFT OUTER join to the same data stream (self-join). For an INNER join, a result is returned only
when a match is found. For a LEFT OUTER join, if an event from the left side of the join is unmatched, a row that
has NULL for all the columns of the right side is returned. This technique is very useful to find an absence of
events. For more information, see JOIN.

The purpose of this article is to demonstrate how to write different Stream Analytics Query Language queries and
see results in the browser. However, this is just to get you started. Stream Analytics supports a variety of inputs and
outputs and can even use functions in Azure Machine Learning to make it a robust tool for analyzing data streams.
For more information about how to write queries, read the article about common query patterns.

https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics

Process configurable threshold-based rules in Azure
Stream Analytics
6 minutes to read • Edit Online

Scenario: Alerting based on adjustable rule thresholds

Recommended design pattern

Example data and query

Reference data

This article describes how to use reference data to achieve an alerting solution that uses configurable threshold-
based rules in Azure Stream Analytics.

You may need to produce an alert as output when incoming streamed events have reached a certain value, or
when an aggregated value based on the incoming streamed events exceeds a certain threshold. It simple to set up
a Stream Analytics query that compared value to a static threshold that is fixed and predetermined. A fixed
threshold can be hard-coded into the streaming query syntax using simple numerical comparisons (greater than,
less than, and equality).

In some cases, the threshold values need to be more easily configurable without editing the query syntax each time
that a threshold value changes. In other cases, you may need numerous devices or users processed by the same
query with each of them having a different threshold values on each kind of device.

This pattern can be used to dynamically configure thresholds, selectively choose which kind of device the threshold
applies by filtering the input data, and selectively choose which fields to include in the output.

Use a reference data input to a Stream Analytics job as a lookup of the alert thresholds:

Store the threshold values in the reference data, one value per key.
Join the streaming data input events to the reference data on the key column.
Use the keyed value from the reference data as the threshold value.

In the example, alerts are generated when the aggregate of data streaming in from devices in a minute-long
window matches the stipulated values in the rule supplied as reference data.

In the query, for each deviceId, and each metricName under the deviceId, you can configure from 0 to 5
dimensions to GROUP BY. Only the events having the corresponding filter values are grouped. Once grouped,
windowed aggregates of Min, Max, Avg, are calculated over a 60-second tumbling window. Filters on the
aggregated values are then calculated as per the configured threshold in the reference, to generate the alert output
event.

As an example, assume there is a Stream Analytics job that has a reference data input named rules, and streaming
data input named metrics.

This example reference data shows how a threshold-based rule could be represented. A JSON file holds the
reference data and is saved into Azure blob storage, and that blob storage container is used as a reference data
input named rules. You could overwrite this JSON file and replace the rule configuration as time goes on, without
stopping or starting the streaming job.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-threshold-based-rules.md

{
 "ruleId": 1234,
 "deviceId" : "978648",
 "metricName": "CPU",
 "alertName": "hot node AVG CPU over 90",
 "operator" : "AVGGREATEROREQUAL",
 "value": 90,
 "includeDim": {
 "0": "FALSE",
 "1": "FALSE",
 "2": "TRUE",
 "3": "FALSE",
 "4": "FALSE"
 },
 "filter": {
 "0": "",
 "1": "",
 "2": "C1",
 "3": "",
 "4": ""
 }
}

Example streaming query

The example rule is used to represent an adjustable alert when CPU exceeds (average is greater than or equal
to) the value 90 percent. The value field is configurable as needed.
Notice the rule has an operator field, which is dynamically interpreted in the query syntax later on
AVGGREATEROREQUAL .

The rule filters the data on a certain dimension key 2 with value C1 . Other fields are empty string, indicating
not to filter the input stream by those event fields. You could set up additional CPU rules to filter other
matching fields as needed.
Not all columns are to be included in the output alert event. In this case, includedDim key number 2 is turned
on TRUE to represent that field number 2 of event data in the stream will be included in the qualifying output
events. The other fields are not included in the alert output, but the field list can be adjusted.

This example Stream Analytics query joins the rules reference data from the example above, to an input stream of
data named metrics.

WITH transformedInput AS
(
 SELECT
 dim0 = CASE rules.includeDim.[0] WHEN 'TRUE' THEN metrics.custom.dimensions.[0].value ELSE NULL END,
 dim1 = CASE rules.includeDim.[1] WHEN 'TRUE' THEN metrics.custom.dimensions.[1].value ELSE NULL END,
 dim2 = CASE rules.includeDim.[2] WHEN 'TRUE' THEN metrics.custom.dimensions.[2].value ELSE NULL END,
 dim3 = CASE rules.includeDim.[3] WHEN 'TRUE' THEN metrics.custom.dimensions.[3].value ELSE NULL END,
 dim4 = CASE rules.includeDim.[4] WHEN 'TRUE' THEN metrics.custom.dimensions.[4].value ELSE NULL END,
 metric = metrics.metric.value,
 metricName = metrics.metric.name,
 deviceId = rules.deviceId,
 ruleId = rules.ruleId,
 alertName = rules.alertName,
 ruleOperator = rules.operator,
 ruleValue = rules.value
 FROM
 metrics
 timestamp by eventTime
 JOIN
 rules
 ON metrics.deviceId = rules.deviceId AND metrics.metric.name = rules.metricName
 WHERE
 (rules.filter.[0] = '' OR metrics.custom.filters.[0].value = rules.filter.[0]) AND
 (rules.filter.[1] = '' OR metrics.custom.filters.[1].value = rules.filter.[1]) AND
 (rules.filter.[2] = '' OR metrics.custom.filters.[2].value = rules.filter.[2]) AND
 (rules.filter.[3] = '' OR metrics.custom.filters.[3].value = rules.filter.[3]) AND
 (rules.filter.[4] = '' OR metrics.custom.filters.[4].value = rules.filter.[4])
)

SELECT
 System.Timestamp as time,
 transformedInput.deviceId as deviceId,
 transformedInput.ruleId as ruleId,
 transformedInput.metricName as metric,
 transformedInput.alertName as alert,
 AVG(metric) as avg,
 MIN(metric) as min,
 MAX(metric) as max,
 dim0, dim1, dim2, dim3, dim4
FROM
 transformedInput
GROUP BY
 transformedInput.deviceId,
 transformedInput.ruleId,
 transformedInput.metricName,
 transformedInput.alertName,
 dim0, dim1, dim2, dim3, dim4,
 ruleOperator,
 ruleValue,
 TumblingWindow(second, 60)
HAVING
 (
 (ruleOperator = 'AVGGREATEROREQUAL' AND avg(metric) >= ruleValue) OR
 (ruleOperator = 'AVGEQUALORLESS' AND avg(metric) <= ruleValue)
)

Example streaming input event data
This example JSON data represents the metrics input data that is used in the above streaming query.

Three example events are listed within the 1-minute timespan, value T14:50 .
All three have the same deviceId value 978648 .
The CPU metric values vary in each event, 98 , 95 , 80 respectively. Only the first two example events exceed
the CPU alert rule established in the rule.

{
 "eventTime": "2018-04-30T14:50:23.1324132Z",
 "deviceId": "978648",
 "custom": {
 "dimensions": {
 "0": {
 "name": "NodeType",
 "value": "N1"
 },
 "1": {
 "name": "Cluster",
 "value": "C1"
 },
 "2": {
 "name": "NodeName",
 "value": "N024"
 }
 },
 "filters": {
 "0": {
 "name": "application",
 "value": "A1"
 },
 "1": {
 "name": "deviceType",
 "value": "T1"
 },
 "2": {
 "name": "cluster",
 "value": "C1"
 },
 "3": {
 "name": "nodeType",
 "value": "N1"
 }
 }
 },
 "metric": {
 "name": "CPU",
 "value": 98,
 "count": 1.0,
 "min": 98,
 "max": 98,
 "stdDev": 0.0
 }
}
{
 "eventTime": "2018-04-30T14:50:24.1324138Z",
 "deviceId": "978648",
 "custom": {
 "dimensions": {
 "0": {
 "name": "NodeType",
 "value": "N2"
 },
 "1": {
 "name": "Cluster",
 "value": "C1"
 },

The includeDim field in the alert rule was key number 2. The corresponding key 2 field in the example events is
named NodeName . The three example events have values N024 , N024 , and N014 respectively. In the output, you
see only the node N024 as that is the only data that matches the alert criteria for high CPU. N014 does not
meet the high CPU threshold.
The alert rule is configured with a filter only on key number 2, which corresponds to the cluster field in the
sample events. The three example events all have value C1 and match the filter criteria.

 },
 "2": {
 "name": "NodeName",
 "value": "N024"
 }
 },
 "filters": {
 "0": {
 "name": "application",
 "value": "A1"
 },
 "1": {
 "name": "deviceType",
 "value": "T1"
 },
 "2": {
 "name": "cluster",
 "value": "C1"
 },
 "3": {
 "name": "nodeType",
 "value": "N2"
 }
 }
 },
 "metric": {
 "name": "CPU",
 "value": 95,
 "count": 1,
 "min": 95,
 "max": 95,
 "stdDev": 0
 }
}
{
 "eventTime": "2018-04-30T14:50:37.1324130Z",
 "deviceId": "978648",
 "custom": {
 "dimensions": {
 "0": {
 "name": "NodeType",
 "value": "N3"
 },
 "1": {
 "name": "Cluster",
 "value": "C1 "
 },
 "2": {
 "name": "NodeName",
 "value": "N014"
 }
 },
 "filters": {
 "0": {
 "name": "application",
 "value": "A1"
 },
 "1": {
 "name": "deviceType",
 "value": "T1"
 },
 "2": {
 "name": "cluster",
 "value": "C1"
 },
 "3": {
 "name": "nodeType",
 "value": "N3"
 }
 }

 }
 },
 "metric": {
 "name": "CPU",
 "value": 80,
 "count": 1,
 "min": 80,
 "max": 80,
 "stdDev": 0
 }
}

Example output

{"time":"2018-05-01T02:03:00.0000000Z","deviceid":"978648","ruleid":1234,"metric":"CPU",
"alert":"hot node AVG CPU over 90","avg":96.5,"min":95.0,"max":98.0,
"dim0":null,"dim1":null,"dim2":"N024","dim3":null,"dim4":null}

This example output JSON data shows a single alert event was produced based on the CPU threshold rule defined
in the reference data. The output event contains the name of the alert as well as the aggregated (average, min,
max) of the fields considered. The output event data includes field key number 2 NodeName value N024 due to the
rule configuration. (The JSON was altered to show line breaks for readability.)

Tutorial: Process Apache Kafka for Event Hubs events
using Stream analytics
5 minutes to read • Edit Online

Prerequisites

Create a Kafka enabled Event Hubs namespace

NOTENOTE

Send messages with Kafka in Event Hubs

This article shows how to stream data into Kafka-enabled Event Hubs and process it with Azure Stream Analytics.
It walks you through the following steps:

1. Create a Kafka enabled Event Hubs namespace.
2. Create a Kafka client that sends messages to the event hub.
3. Create a Stream Analytics job that copies data from the event hub into an Azure blob storage.

You do not need to change your protocol clients or run your own clusters when you use the Kafka endpoint
exposed by an event hub. Azure Event Hubs supports Apache Kafka version 1.0. and above.

To complete this quickstart, make sure you have the following prerequisites:

An Azure subscription. If you do not have one, create a free account before you begin.
Java Development Kit (JDK) 1.7+.
Download and install a Maven binary archive.
Git
An Azure Storage account. If you don't have one, create one before proceeding further. The Stream Analytics
job in this walkthrough stores the output data in an Azure blob storage.

When you create a standard tier Event Hubs namespace, the Kafka endpoint for the namespace is automatically
enabled. You can stream events from your applications that use the Kafka protocol into standard tier Event Hubs.
Follow step-by-step instructions in the Create an event hub using Azure portal to create a standard tier Event
Hubs namespace.

Event Hubs for Kafka is available only on standard and dedicated tiers. The basic tier doesn't support Kafka on Event Hubs.

1. Clone the Azure Event Hubs for Kafka repository to your machine.

2. Navigate to the folder: azure-event-hubs-for-kafka/quickstart/java/producer .

3. Update the configuration details for the producer in src/main/resources/producer.config . Specify the name
and connection string for the event hub namespace.

https://github.com/microsoft/azure-docs/blob/master/articles/event-hubs/event-hubs-kafka-stream-analytics.md
https://kafka.apache.org/10/documentation.html
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://aka.ms/azure-jdks
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://www.git-scm.com/
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-create
https://github.com/azure/azure-event-hubs-for-kafka

Verify that event hub receives the data

bootstrap.servers={EVENT HUB NAMESPACE}.servicebus.windows.net:9093
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
username="$ConnectionString" password="{CONNECTION STRING for EVENT HUB NAMESPACE}";

 //final ProducerRecord<Long, String> record = new ProducerRecord<Long, String>(TOPIC, time,
"Test Data " + i);

 final ProducerRecord<Long, String> record = new ProducerRecord<Long, String>(TOPIC, time, "{
\"eventData\": \"Test Data " + i + "\" }");

mvn clean package
mvn exec:java -Dexec.mainClass="TestProducer"

4. Navigate to azure-event-hubs-for-kafka/quickstart/java/producer/src/main/java/ , and open
TestDataReporter.java file in an editor of your choice.

5. Comment out the following line of code:

6. Add the following line of code in place of the commented code:

This code sends the event data in JSON format. When you configure input for a Stream Analytics job, you
specify JSON as the format for the input data.

7. Run the producer and stream into Kafka-enabled Event Hubs. On a Windows machine, when using a
Node.js command prompt, switch to the azure-event-hubs-for-kafka/quickstart/java/producer folder
before running these commands.

1. Select Event Hubs under ENTITIES. Confirm that you see an event hub named test.

2. Confirm that you see messages coming in to the event hub.

Process event data using a Stream Analytics job

Create a Stream Analytics jobCreate a Stream Analytics job

In this section, you create an Azure Stream Analytics job. The Kafka client sends events to the event hub. You create
a Stream Analytics job that takes event data as input and outputs it to an Azure blob storage. If you don't have an
Azure Storage account, create one.

The query in the Stream Analytics job passes through the data without performing any analytics. You can create a
query that transforms the input data to produce output data in a different format or with gained insights.

1. Select + Create a resource in the Azure portal.
2. Select Analytics in the Azure Marketplace menu, and select Stream Analytics job.
3. On the New Stream Analytics page, do the following actions:

a. Enter a name for the job.

b. Select your subscription.

c. Select Create new for the resource group and enter the name. You can also use an existing
resource group.

d. Select a location for the job.

e. Select Create to create the job.

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://portal.azure.com

Configure job inputConfigure job input
1. In the notification message, select Go to resource to see the Stream Analytics job page.

2. Select Inputs in the JOB TOPOLOGY section on the left menu.

3. Select Add stream input, and then select Event Hub.

4. On the Event Hub input configuration page, do the following actions:

a. Specify an alias for the input.

b. Select your Azure subscription.

Configure job outputConfigure job output

c. Select the event hub namespace your created earlier.

d. Select test for the event hub.

e. Select Save.

1. Select Outputs in the JOB TOPOLOGY section on the menu.
2. Select + Add on the toolbar, and select Blob storage
3. On the Blob storage output settings page, do the following actions:

a. Specify an alias for the output.

b. Select your Azure subscription.

c. Select your Azure Storage account.

d. Enter a name for the container that stores the output data from the Stream Analytics query.

e. Select Save.

Define a queryDefine a query

Run the Stream Analytics jobRun the Stream Analytics job

After you have a Stream Analytics job setup to read an incoming data stream, the next step is to create a
transformation that analyzes data in real time. You define the transformation query by using Stream Analytics
Query Language. In this walkthrough, you define a query that passes through the data without performing any
transformation.

1. Select Query.

2. In the query window, replace [YourOutputAlias] with the output alias you created earlier.

3. Replace [YourInputAlias] with the input alias you created earlier.

4. Select Save on the toolbar.

1. Select Overview on the left menu.

2. Select Start.

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

Test the scenario

3. On the Start job page, select Start.

4. Wait until the status of the job changes from Starting to running.

mvn exec:java -Dexec.mainClass="TestProducer"

1. Run the Kafka producer again to send events to the event hub.

Next steps

{"eventData":"Test Data 0","EventProcessedUtcTime":"2018-08-
30T03:27:23.1592910Z","PartitionId":0,"EventEnqueuedUtcTime":"2018-08-30T03:27:22.9220000Z"}
{"eventData":"Test Data 1","EventProcessedUtcTime":"2018-08-
30T03:27:23.3936511Z","PartitionId":0,"EventEnqueuedUtcTime":"2018-08-30T03:27:22.9220000Z"}
{"eventData":"Test Data 2","EventProcessedUtcTime":"2018-08-
30T03:27:23.3936511Z","PartitionId":0,"EventEnqueuedUtcTime":"2018-08-30T03:27:22.9220000Z"}

2. Confirm that you see output data is generated in the Azure blob storage. You see a JSON file in the
container with 100 rows that look like the following sample rows:

The Azure Stream Analytics job received input data from the event hub and stored it in the Azure blob
storage in this scenario.

In this article, you learned how to stream into Kafka-enabled Event Hubs without changing your protocol clients or
running your own clusters. To learn more about Event Hubs and Event Hubs for Kafka, see the following topic:

Learn about Event Hubs
Event Hubs for Apache Kafka
How to create Kafka enabled Event Hubs
Stream into Event Hubs from your Kafka applications
Mirror a Kafka broker in a Kafka-enabled event hub
Connect Apache Spark to a Kafka-enabled event hub
Connect Apache Flink to a Kafka-enabled event hub
Integrate Kafka Connect with a Kafka-enabled event hub
Connect Akka Streams to a Kafka-enabled event hub
Explore samples on our GitHub

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-what-is-event-hubs
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-create-kafka-enabled
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-quickstart-kafka-enabled-event-hubs
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-kafka-mirror-maker-tutorial
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-kafka-spark-tutorial
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-kafka-flink-tutorial
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-kafka-connect-tutorial
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-kafka-akka-streams-tutorial
https://github.com/azure/azure-event-hubs-for-kafka

Process data from your event hub using Azure
Stream Analytics
3 minutes to read • Edit Online

Key benefits

End-to-end flow

The Azure Stream Analytics service makes it easy to ingest, process, and analyze streaming data from Azure Event
Hubs, enabling powerful insights to drive real-time actions. This integration allows you to quickly create a hot-path
analytics pipeline. You can use the Azure portal to visualize incoming data and write a Stream Analytics query.
Once your query is ready, you can move it into production in only a few clicks.

Here are the key benefits of Azure Event Hubs and Azure Stream Analytics integration:

Preview data – You can preview incoming data from an event hub in the Azure portal.
Test your query – Prepare a transformation query and test it directly in the Azure portal. For the query
language syntax, see Stream Analytics Query Language documentation.
Deploy your query to production – You can deploy the query into production by creating and starting an
Azure Stream Analytics job.

1. Sign in to the Azure portal.

2. Navigate to your Event Hubs namespace and then navigate to the event hub, which has the incoming
data.

3. Select Process Data on the event hub page.

4. Select Explore on the Enable real-time insights from events tile.

https://github.com/microsoft/azure-docs/blob/master/articles/event-hubs/process-data-azure-stream-analytics.md
https://docs.microsoft.com/stream-analytics-query/built-in-functions-azure-stream-analytics
https://portal.azure.com

5. You see a query page with values already set for the following fields:

NOTENOTE

a. Your event hub as an input for the query.

b. Sample SQL query with SELECT statement.

c. An output alias to refer to your query test results.

When you use this feature for the first time, this page asks for your permission to create a consumer group
and a policy for your event hub to preview incoming data.

6. Select Create in the Input preview pane as shown in the preceding image.

7. You'll immediately see a snapshot of the latest incoming data in this tab.

The serialization type in your data is automatically detected (JSON/CSV). You can manually change it
as well to JSON/CSV/AVRO.

You can preview incoming data in the table format or raw format.

If your data shown isn't current, select Refresh to see the latest events.

Here is an example of data in the table format:

Here is an example of data in the raw format:

8. Select Test query to see the snapshot of test results of your query in the Test results tab. You can also
download the results.

NOTENOTE

9. Write your own query to transform the data. See Stream Analytics Query Language reference.

10. Once you've tested the query and you want to move it in to production, select Deploy query. To deploy the
query, create an Azure Stream Analytics job where you can set an output for your job, and start the job. To
create a Stream Analytics job, specify a name for the job, and select Create.

We recommend that you create a consumer group and a policy for each new Azure Stream Analytics job that you
create from the Event Hubs page. Consumer groups allow only five concurrent readers, so providing a dedicated
consumer group for each job will avoid any errors that might arise from exceeding that limit. A dedicated policy allows
you to rotate your key or revoke permissions without impacting other resources.

11. Your Stream Analytics job is now created where your query is the same that you tested, and input is your
event hub.

12. To complete the pipeline, set the output of the query, and select Start to start the job.

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference

Known limitations

Streaming units

Next steps

NOTENOTE
Before starting the job, don't forget to replace the outputalias by the output name you created in Azure Stream
Analytics.

While testing your query, the test results take approximately 6 seconds to load. We're working on improving the
performance of testing. However, when deployed in production, Azure Stream Analytics will have subsecond
latency.

Your Azure Stream Analytics job defaults to three streaming units (SUs). To adjust this setting, select Scale on the
left menu in the Stream Analytics job page in the Azure portal. To learn more about streaming units, see
Understand and adjust Streaming Units.

To learn more about Stream Analytics queries, see Stream Analytics Query Language

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-streaming-unit-consumption
https://docs.microsoft.com/stream-analytics-query/built-in-functions-azure-stream-analytics

Stream data by using Azure SQL Database Stream
Analytics integration (preview)
5 minutes to read • Edit Online

Key benefits

Prerequisites

Configure Stream analytics integration

Users can now ingest, process, view, and analyze real-time streaming data into a table directly from a SQL
database in the Azure portal using Azure Stream Analytics. This experience enables a wide variety of scenarios
such as connected car, remote monitoring, fraud detection, and many more. In the Azure portal, you can select an
events source (Event Hub/IoT Hub), view incoming real-time events, and select a table to store events. You can also
write Stream Analytics Query Language queries in the portal to transform incoming events and store them in the
selected table. This new entry point is in addition to the creation and configuration experiences that already exist in
Stream Analytics. This experience starts from the context of your database, enabling you to quickly set up a Stream
Analytics job and navigate seamlessly between the Azure SQL Database and Stream Analytics experiences.

Minimum context switching: You can start from a SQL Database in the portal and start ingesting real-time data
into a table without switching to any other service.
Reduced number of steps: The context of your database and table is used to pre-configure a Stream Analytics
job.
Additional ease of use with preview data: Preview incoming data from the events source (Event Hub/IoT Hub)
in the context of selected table

To complete the steps in this article, you need the following resources:

An Azure subscription. If you don't have an Azure subscription, create a free account.
A SQL database. For details, see Create a single database in Azure SQL Database.
A firewall rule allowing your computer to connect to the Azure SQL server. For details, see Create a server-level
firewall rule.

1. Sign in to the Azure portal.

2. Navigate to your SQL database where you want to ingest your streaming data. Select Stream analytics

https://github.com/microsoft/azure-docs/blob/master/articles/sql-database/sql-database-stream-analytics.md
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://azure.microsoft.com/free/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-single-database-get-started
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-server-level-firewall-rule

(preview).

3. To start ingesting your streaming data into this SQL database, select Create and give a name to your
streaming job, and then select Next: Input.

4. Enter your events source details, and then select Next: Output.

Input type: Event Hub/IoT Hub
Input alias: Enter a name to identify your events source
Subscription: Same as SQL Database subscription
Event Hub namespace: Name for namespace
Event Hub name: Name of event hub within selected namespace
Event Hub policy name (Default to create new): Give a policy name
Event Hub consumer group (Default to create new): Give a consumer group name

We recommend that you create a consumer group and a policy for each new Azure Stream
Analytics job that you create from here. Consumer groups allow only five concurrent readers, so
providing a dedicated consumer group for each job will avoid any errors that might arise from
exceeding that limit. A dedicated policy allows you to rotate your key or revoke permissions
without impacting other resources.

5. Select which table you want to ingest your streaming data into. Once done, select Create.

Username, Password: Enter your credentials for SQL server authentication. Select Validate.
Table: Select Create new or Use existing. In this flow, let’s select Create. This will create a new table
when you start the stream Analytics job.

6. A query page opens with following details:

Your Input (input events source) from which you will ingest data
Your Output (output table) which will store transformed data
Sample SAQL query with SELECT statement.
Input preview: Shows snapshot of latest incoming data from input events source.

The serialization type in your data is automatically detected (JSON/CSV). You can manually
change it as well to JSON/CSV/AVRO.
You can preview incoming data in the Table format or Raw format.
If your data shown isn't current, select Refresh to see the latest events.
Select Select time range to test your query against a specific time range of incoming events.
Select Upload sample input to test your query by uploading a sample JSON/CSV file. For more
information about testing a SAQL query, see Test an Azure Stream Analytics job with sample data.

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-stream-analytics-query-patterns
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-test-query

Test results: Select Test query and you can see the results of your streaming query

Test results schema: Shows the schema of the results of your streaming query after testing. Make sure
the test results schema matches with your output schema.

Output schema: This contains schema of the table you selected in step 5 (new or existing).
Create new: If you selected this option in step 5, you won’t see the schema yet until you start the
streaming job. When creating a new table, select the appropriate table index. For more

Use existing: If you selected this option in step 5, you will see the schema of selected table.
information about table indexing, see Clustered and Nonclustered Indexes Described.

7. After you are done authoring & testing the query, select Save query. Select Start Stream Analytics job to
start ingesting transformed data into the SQL table. Once you finalize the following fields, start the job.

Output start time: This defines the time of the first output of the job.

Streaming units: Azure Stream Analytics is priced by the number of streaming units required to process
the data into the service. For more information, see Azure Stream Analytics pricing.
Output data error handling:

SQL Database output settings: An option for inheriting the partitioning scheme of your previous
query step, to enable fully parallel topology with multiple writers to the table. For more information, see
Azure Stream Analytics output to Azure SQL Database.
Max batch count: The recommended upper limit on the number of records sent with every bulk insert
transaction.
For more information about output error handling, see Output error policies in Azure Stream Analytics.

Now: The job will start now and process new incoming data.
Custom: The job will start now but will process data from a specific point in time (that can be in
the past or the future). For more information, see How to start an Azure Stream Analytics job.

Retry: When an error occurs, Azure Stream Analytics retries writing the event indefinitely until the
write succeeds. There is no timeout for retries. Eventually all subsequent events are blocked from
processing by the event that is retrying. This option is the default output error handling policy.
Drop: Azure Stream Analytics will drop any output event that results in a data conversion error.
The dropped events cannot be recovered for reprocessing later. All transient errors (for example,
network errors) are retried regardless of the output error handling policy configuration.

8. Once you start the job, you will see the Running job in the list, and you can take following actions:

Start/stop the job: If the job is running, you can stop the job. If the job is stopped, you can start the job.
Edit job: You can edit the query. If you want to do more changes to the job ex, add more inputs/outputs,
then open the job in Stream Analytics. Edit option is disabled when the job is running.
Preview output table: You can preview the table in SQL query editor.
Open in Stream Analytics: Open the job in Stream Analytics service to view monitoring, debugging
details of the job.

https://docs.microsoft.com/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described/
https://docs.microsoft.com/en-us/azure/stream-analytics/start-job
https://azure.microsoft.com/pricing/details/stream-analytics/
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-sql-output-perf
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-output-error-policy

Next steps
Azure Stream Analytics documentation
Azure Stream Analytics solution patterns

https://docs.microsoft.com/azure/stream-analytics/
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-solution-patterns

Geofencing and geospatial aggregation scenarios
with Azure Stream Analytics
4 minutes to read • Edit Online

Geofencing

Geofencing scenarioGeofencing scenario

Define geofences in reference dataDefine geofences in reference data

SITEID SITENAME GEOFENCE ALLOWEDDEVICEID

With built-in geospatial functions, you can use Azure Stream Analytics to build applications for scenarios such as
fleet management, ride sharing, connected cars, and asset tracking.

Azure Stream Analytics supports low latency real-time geofencing computations in the cloud and on the IoT Edge
runtime.

A manufacturing company needs to track assets on their buildings. They equipped every device with a GPS and
want to receive notifications if a device leaves a certain area.

Reference data used in this example has the geofence information for the buildings and the devices that are
allowed in each of the buildings. Remember that reference data could either be static or slow changing. Static
reference data is used for this scenario. A stream of data continuously emits the device ID and its current position.

A geofence can be defined using a GeoJSON object. For jobs with compatibility version 1.2 and higher, geofences
can also be defined using Well Known Text (WKT) as NVARCHAR(MAX) . WKT is an Open Geospatial Consortium
(OGC) standard that is used to represent spatial data in a textual format.

The built-in geospatial functions can use defined geofences to find out if an element is in or out of a specific
geofence polygon.

The following table is an example of geofence reference data that could be stored in Azure blob storage or an
Azure SQL table. Every site is represented by a geospatial polygon, and every device is associated with an allowed
site ID.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/geospatial-scenarios.md

1 "Redmond Building 41" "POLYGON((-
122.1337357922017
47.63782998329432,-
122.13373042778369
47.637634793257305,-
122.13346757130023
47.637642022530954,-
122.13348902897235
47.637508280806806,-
122.13361777500506
47.637508280806806,-
122.13361241058703
47.63732393354484,-
122.13265754417773
47.63730947490855,-
122.13266290859576
47.637519124743164,-
122.13302232460376
47.637515510097955,-
122.13301696018573
47.63764925180358,-
122.13272728161212
47.63764925180358,-
122.13274873928424
47.63784082716388,-
122.13373579220172
47.63782998329432))"

"B"

2 "Redmond Building 40" "POLYGON((-
122.1336154507967
47.6366745947009,-
122.13361008637867
47.636483015064535,-
122.13349206918201
47.636479400347675,-
122.13349743360004
47.63636372927573,-
122.13372810357532
47.63636372927573,-
122.13373346799335
47.63617576323771,-
122.13263912671528
47.63616491902258,-
122.13264985555134
47.63635649982525,-
122.13304682248554
47.636367344000604,-
122.13305218690357
47.63650831807564,-
122.13276250832996
47.636497473929516,-
122.13277323716602
47.63668543881025,-
122.1336154507967
47.6366745947009))"

"A"

SITEID SITENAME GEOFENCE ALLOWEDDEVICEID

3 "Redmond Building 22" "POLYGON((-
122.13611660248233
47.63758544698554,-
122.13635263687564
47.6374083293018,-
122.13622389084293
47.63733603619712,-
122.13622389084293
47.63717699101473,-
122.13581619507266
47.63692757827657,-
122.13559625393344
47.637046862778135,-
122.13569281345798
47.637144458985965,-
122.13570890671207
47.637314348246214,-
122.13611660248233
47.63758544698554))"

"C"

SITEID SITENAME GEOFENCE ALLOWEDDEVICEID

Generate alerts with geofenceGenerate alerts with geofence

DEVICEID GEOPOSITION

"A" "POINT(-122.13292341559497 47.636318374032726)"

"B" "POINT(-122.13338475554553 47.63743531308874)"

"C" "POINT(-122.13354001095752 47.63627622505007)"

SELECT DeviceStreamInput.DeviceID, SiteReferenceInput.SiteID, SiteReferenceInput.SiteName
INTO Output
FROM DeviceStreamInput
JOIN SiteReferenceInput
ON st_within(DeviceStreamInput.GeoPosition, SiteReferenceInput.Geofence) = 0
WHERE DeviceStreamInput.DeviceID = SiteReferenceInput.AllowedDeviceID

Devices can emit their ID and location every minute through a stream called DeviceStreamInput . The following
table is a stream of input.

You can write a query that joins the device stream with the geofence reference data and generates an alert every
time a device is outside of an allowed building.

The following image represents the geofences. You can see where the devices are in accordance to the stream data
input.

Site with multiple allowed devicesSite with multiple allowed devices

Geospatial aggregation

Geospatial aggregation scenarioGeospatial aggregation scenario

Define the geofencesDefine the geofences

REGIONID REGIONNAME GEOFENCE

Device "C" is located inside building ID 2, which is not allowed according to the reference data. This device should
be located inside building ID 3. Running this job will generate an alert for this specific violation.

If a site allows multiple devices, an array of device IDs can be defined in AllowedDeviceID and a User-Defined
Function can be used on the WHERE clause to verify if the stream device ID matches any device ID in that list. For
more information, view the Javascript UDF tutorial for cloud jobs and the C# UDF tutorial for edge jobs.

Azure Stream Analytics supports low latency real-time geospatial aggregation in the cloud and on the IoT Edge
runtime.

A cab company wants to build a real-time application to guide their cab drivers looking for ride towards the areas
of the cities currently experiencing higher demand.

The company stores logical regions of the city as reference data. Each region is defined by a RegionID,
RegionName, and Geofence.

The following table is an example of geofence reference data that could be stored in Azure blob storage or an
Azure SQL table. Every region is represented by a geospatial polygon, which is used to correlate with the requests
coming from streaming data.

These polygons are for reference only and do not represent actual city logical or physical separations.

1 "SoHo" "POLYGON((-74.00279525078275
40.72833625216264,-
74.00547745979765
40.721929158663244,-
74.00125029839018
40.71893680218994,-
73.9957785919998
40.72521409075776,-
73.9972377137039
40.72557184584898,-
74.00279525078275
40.72833625216264))"

2 "Chinatown" "POLYGON((-73.99712367114876
40.71281582267133,-
73.9901070123658
40.71336881907936,-
73.99023575839851
40.71452359088633,-
73.98976368961189
40.71554823078944,-
73.99551434573982
40.717337246783735,-
73.99480624255989
40.718491949759304,-
73.99652285632942
40.719109951574,-
73.99776740131233
40.7168005470334,-
73.99903340396736
40.71727219249899,-
74.00193018970344
40.71938642421256,-
74.00409741458748
40.71688186545551,-
74.00051398334358
40.71517415773184,-
74.0004281526551
40.714377212470005,-
73.99849696216438
40.713450141693166,-
73.99748845157478
40.71405192594819,-
73.99712367114876
40.71281582267133))"

3 "Tribeca" "POLYGON((-74.01091641815208
40.72583120006787,-
74.01338405044578
40.71436586362705,-
74.01370591552757
40.713617702123415,-
74.00862044723533
40.711308107057235,-
74.00194711120628
40.7194238654018,-
74.01091641815208
40.72583120006787))"

REGIONID REGIONNAME GEOFENCE

Aggregate data over a window of timeAggregate data over a window of time

USERID FROMLOCATION TOLOCATION TRIPREQUESTEDTIME

"A" "POINT(-
74.00726861389182
40.71610611981975)"

"POINT(-
73.98615095917779
40.703107386025835)"

"2019-03-12T07:00:00Z"

"B" "POINT(-
74.00249841021645
40.723827238895666)"

"POINT(-
74.01160699942085
40.71378884930115)"

"2019-03-12T07:01:00Z"

"C" "POINT(-
73.99680120565864
40.716439898624024)"

"POINT(-
73.98289663412544
40.72582343969828)"

"2019-03-12T07:02:00Z"

"D" "POINT(-
74.00741090068288
40.71615626755086)"

"POINT(-
73.97999843120539
40.73477895807408)"

"2019-03-12T07:03:00Z"

SELECT count(*) as NumberOfRequests, RegionsRefDataInput.RegionName
FROM UserRequestStreamDataInput
JOIN RegionsRefDataInput
ON st_within(UserRequestStreamDataInput.FromLocation, RegionsRefDataInput.Geofence) = 1
GROUP BY RegionsRefDataInput.RegionName, hoppingwindow(minute, 1, 15)

Next steps

The following table contains streaming data of "rides."

The following query joins the device stream with the geofence reference data and calculates the number of
requests per region on a time window of 15 minutes every minute.

This query outputs a count of requests every minute for the last 15 minutes by each region within the city. This
information can be displayed easily by Power BI dashboard, or can be broadcasted to all drivers as SMS text
messages through integration with services like Azure functions.

The image below illustrates the output of the query to Power BI dashboard.

Introduction to Stream Analytics geospatial functions

GeoSpatial Functions (Azure Stream Analytics)

https://docs.microsoft.com/stream-analytics-query/geospatial-functions

Understand Stream Analytics job monitoring and
how to monitor queries
3 minutes to read • Edit Online

Introduction: The monitor page

Metrics available for Stream Analytics
METRIC DEFINITION

The Azure portal surfaces key performance metrics that can be used to monitor and troubleshoot your query and
job performance. To see these metrics, browse to the Stream Analytics job you are interested in seeing metrics for
and view the Monitoring section on the Overview page.

The window will appear as shown:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-monitoring.md

Backlogged Input Events Number of input events that are backlogged. A non-zero
value for this metric implies that your job isn't able to keep up
with the number of incoming events. If this value is slowly
increasing or consistently non-zero, you should scale out your
job. You can learn more by visiting Understand and adjust
Streaming Units.

Data Conversion Errors Number of output events that could not be converted to the
expected output schema. Error policy can be changed to
'Drop' to drop events that encounter this scenario.

Early Input Events Events whose application timestamp is earlier than their
arrival time by more than 5 minutes.

Failed Function Requests Number of failed Azure Machine Learning function calls (if
present).

Function Events Number of events sent to the Azure Machine Learning
function (if present).

Function Requests Number of calls to the Azure Machine Learning function (if
present).

Input Deserialization Errors Number of input events that could not be deserialized.

Input Event Bytes Amount of data received by the Stream Analytics job, in
bytes. This can be used to validate that events are being sent
to the input source.

Input Events Number of records deserialized from the input events. This
count does not include incoming events that result in
deserialization errors.

Input Sources Received Number of messages received by the job. For Event Hub, a
message is a single EventData. For Blob, a message is a single
blob. Please note that Input Sources are counted before
deserialization. If there are deserialization errors, input sources
can be greater than input events. Otherwise, it can be less
than or equal to input events since each message can contain
multiple events.

Late Input Events Events that arrived later than the configured late arrival
tolerance window. Learn more about Azure Stream Analytics
event order considerations .

Out-of-Order Events Number of events received out of order that were either
dropped or given an adjusted timestamp, based on the Event
Ordering Policy. This can be impacted by the configuration of
the Out of Order Tolerance Window setting.

Output Events Amount of data sent by the Stream Analytics job to the
output target, in number of events.

Runtime Errors Total number of errors related to query processing (excluding
errors found while ingesting events or outputting results)

METRIC DEFINITION

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events

SU % Utilization The utilization of the Streaming Unit(s) assigned to a job from
the Scale tab of the job. Should this indicator reach 80%, or
above, there is high probability that event processing may be
delayed or stopped making progress.

Watermark Delay The maximum watermark delay across all partitions of all
outputs in the job.

METRIC DEFINITION

Customizing Monitoring in the Azure portal

Latest output

You can use these metrics to monitor the performance of your Stream Analytics job.

You can adjust the type of chart, metrics shown, and time range in the Edit Chart settings. For details, see How to
Customize Monitoring.

Another interesting data point to monitor your job is the time of the last output, shown in the Overview page. This
time is the application time (i.e. the time using the timestamp from the event data) of the latest output of your job.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-set-up-alerts#scenarios-to-monitor
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/insights-how-to-customize-monitoring

Get help

Next steps

For further assistance, try our Azure Stream Analytics forum

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Monitor and manage Stream Analytics jobs with
Azure PowerShell cmdlets
11 minutes to read • Edit Online

NOTENOTE

Prerequisites for running Azure PowerShell cmdlets for Stream
Analytics

Log in to your Azure account
Add-AzureAccount
Select the Azure subscription you want to use to create the resource group if you have more han one
subscription on your account.
Select-AzureSubscription -SubscriptionName <subscription name>
If Stream Analytics has not been registered to the subscription, remove remark symbol below (#)to run the
Register-AzureProvider cmdlet to register the provider namespace.
#Register-AzureProvider -Force -ProviderNamespace 'Microsoft.StreamAnalytics'
Create an Azure resource group
New-AzureResourceGroup -Name <YOUR RESOURCE GROUP NAME> -Location <LOCATION>

Log in to your Azure account
Connect-AzAccount
Select the Azure subscription you want to use to create the resource group.
Get-AzSubscription �SubscriptionName "your sub" | Select-AzSubscription
If Stream Analytics has not been registered to the subscription, remove remark symbol below (#)to run the
Register-AzureProvider cmdlet to register the provider namespace.
#Register-AzResourceProvider -Force -ProviderNamespace 'Microsoft.StreamAnalytics'
Create an Azure resource group
New-AzResourceGroup -Name <YOUR RESOURCE GROUP NAME> -Location <LOCATION>

NOTENOTE

Learn how to monitor and manage Stream Analytics resources with Azure PowerShell cmdlets and powershell
scripting that execute basic Stream Analytics tasks.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

Create an Azure Resource Group in your subscription. The following is a sample Azure PowerShell script. For
Azure PowerShell information, see Install and configure Azure PowerShell;

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

Stream Analytics jobs created programmatically do not have monitoring enabled by default. You can manually enable
monitoring in the Azure Portal by navigating to the job�s Monitor page and clicking the Enable button or you can do this
programmatically by following the steps located at Azure Stream Analytics - Monitor Stream Analytics Jobs Programmatically.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-monitor-and-manage-jobs-use-powershell.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az?view=azps-3.3.0
https://docs.microsoft.com/powershell/azure/install-az-ps?view=azps-3.3.0
https://docs.microsoft.com/powershell/azure/overview

Azure PowerShell cmdlets for Stream Analytics

Get-AzureStreamAnalyticsJob | Get-AzStreamAnalyticsJobGet-AzureStreamAnalyticsJob | Get-AzStreamAnalyticsJob

Get-AzureStreamAnalyticsJob

Get-AzStreamAnalyticsJob

Get-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US

Get-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US

Get-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US -Name StreamingJob

Get-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US -Name StreamingJob

Get-AzureStreamAnalyticsInput | Get-AzStreamAnalyticsInputGet-AzureStreamAnalyticsInput | Get-AzStreamAnalyticsInput

The following Azure PowerShell cmdlets can be used to monitor and manage Azure Stream Analytics jobs. Note
that Azure PowerShell has different versions. In the examples listed the first command is for Azure
PowerShell 0.9.8, the second command is for Azure PowerShell 1.0. The Azure PowerShell 1.0 commands
will always have "Az" in the command.

Lists all Stream Analytics jobs defined in the Azure subscription or specified resource group, or gets job
information about a specific job within a resource group.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about all the Stream Analytics jobs in the Azure subscription.

Example 2

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about all the Stream Analytics jobs in the resource group
StreamAnalytics-Default-Central-US.

Example 3

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about the Stream Analytics job StreamingJob in the resource
group StreamAnalytics-Default-Central-US.

Lists all of the inputs that are defined in a specified Stream Analytics job, or gets information about a specific input.

Example 1

Get-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob

Get-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob

Get-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob
�Name EntryStream

Get-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob �Name
EntryStream

Get-AzureStreamAnalyticsOutput | Get-AzStreamAnalyticsOutputGet-AzureStreamAnalyticsOutput | Get-AzStreamAnalyticsOutput

Get-AzureStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob

Get-AzStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob

Get-AzureStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob
�Name Output

Get-AzStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob �Name
Output

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about all the inputs defined in the job StreamingJob.

Example 2

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about the input named EntryStream defined in the job
StreamingJob.

Lists all of the outputs that are defined in a specified Stream Analytics job, or gets information about a specific
output.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about the outputs defined in the job StreamingJob.

Example 2

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

Get-AzureStreamAnalyticsQuota | Get-AzStreamAnalyticsQuotaGet-AzureStreamAnalyticsQuota | Get-AzStreamAnalyticsQuota

Get-AzureStreamAnalyticsQuota �Location "Central US"

Get-AzStreamAnalyticsQuota �Location "Central US"

Get-AzureStreamAnalyticsTransformation | Get-AzStreamAnalyticsTransformationGet-AzureStreamAnalyticsTransformation | Get-AzStreamAnalyticsTransformation

Get-AzureStreamAnalyticsTransformation -ResourceGroupName StreamAnalytics-Default-Central-US -JobName
StreamingJob �Name StreamingJob

Get-AzStreamAnalyticsTransformation -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob
�Name StreamingJob

New-AzureStreamAnalyticsInput | New-AzStreamAnalyticsInputNew-AzureStreamAnalyticsInput | New-AzStreamAnalyticsInput

This PowerShell command returns information about the output named Output defined in the job StreamingJob.

Gets information about the quota of streaming units in a specified region.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about the quota and usage of streaming units in the Central US
region.

Gets information about a specific transformation defined in a Stream Analytics job.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command returns information about the transformation called StreamingJob in the job
StreamingJob.

Creates a new input within a Stream Analytics job, or updates an existing specified input.

The name of the input can be specified in the .json file or on the command line. If both are specified, the name on
the command line must be the same as the one in the file.

If you specify an input that already exists and do not specify the �Force parameter, the cmdlet will ask whether or
not to replace the existing input.

If you specify the �Force parameter and specify an existing input name, the input will be replaced without
confirmation.

For detailed information on the JSON file structure and contents, refer to the Create Input (Azure Stream
Analytics) section of the Stream Analytics Management REST API Reference Library.

Example 1

Azure PowerShell 0.9.8:

https://msdn.microsoft.com/library/dn835010.aspx
https://go.microsoft.com/fwlink/?linkid=517301

New-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob
�File "C:\Input.json"

New-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob �File
"C:\Input.json"

New-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob
�File "C:\Input.json" �Name EntryStream

New-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob �File
"C:\Input.json" �Name EntryStream

New-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob
�File "C:\Input.json" �Name EntryStream -Force

New-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US -JobName StreamingJob �File
"C:\Input.json" �Name EntryStream -Force

New-AzureStreamAnalyticsJob | New-AzStreamAnalyticsJobNew-AzureStreamAnalyticsJob | New-AzStreamAnalyticsJob

Azure PowerShell 1.0:

This PowerShell command creates a new input from the file Input.json. If an existing input with the name specified
in the input definition file is already defined, the cmdlet will ask whether or not to replace it.

Example 2

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command creates a new input in the job called EntryStream. If an existing input with this name is
already defined, the cmdlet will ask whether or not to replace it.

Example 3

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command replaces the definition of the existing input source called EntryStream with the
definition from the file.

Creates a new Stream Analytics job in Microsoft Azure, or updates the definition of an existing specified job.

The name of the job can be specified in the .json file or on the command line. If both are specified, the name on the
command line must be the same as the one in the file.

If you specify a job name that already exists and do not specify the �Force parameter, the cmdlet will ask whether
or not to replace the existing job.

If you specify the �Force parameter and specify an existing job name, the job definition will be replaced without
confirmation.

For detailed information on the JSON file structure and contents, refer to the Create Stream Analytics Job section

https://msdn.microsoft.com/library/dn834994.aspx

New-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �File
"C:\JobDefinition.json"

New-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �File "C:\JobDefinition.json"

New-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �File
"C:\JobDefinition.json" �Name StreamingJob -Force

New-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �File "C:\JobDefinition.json"
�Name StreamingJob -Force

New-AzureStreamAnalyticsOutput | New-AzStreamAnalyticsOutputNew-AzureStreamAnalyticsOutput | New-AzStreamAnalyticsOutput

New-AzureStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �File "C:\Output.json"
�JobName StreamingJob �Name output

of the Stream Analytics Management REST API Reference Library.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command creates a new job from the definition in JobDefinition.json. If an existing job with the
name specified in the job definition file is already defined, the cmdlet will ask whether or not to replace it.

Example 2

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command replaces the job definition for StreamingJob.

Creates a new output within a Stream Analytics job, or updates an existing output.

The name of the output can be specified in the .json file or on the command line. If both are specified, the name on
the command line must be the same as the one in the file.

If you specify an output that already exists and do not specify the �Force parameter, the cmdlet will ask whether or
not to replace the existing output.

If you specify the �Force parameter and specify an existing output name, the output will be replaced without
confirmation.

For detailed information on the JSON file structure and contents, refer to the Create Output (Azure Stream
Analytics) section of the Stream Analytics Management REST API Reference Library.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

https://go.microsoft.com/fwlink/?linkid=517301
https://msdn.microsoft.com/library/dn835015.aspx
https://go.microsoft.com/fwlink/?linkid=517301

New-AzStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �File "C:\Output.json"
�JobName StreamingJob �Name output

New-AzureStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �File "C:\Output.json"
�JobName StreamingJob �Name output -Force

New-AzStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �File "C:\Output.json"
�JobName StreamingJob �Name output -Force

New-AzureStreamAnalyticsTransformation | New-AzStreamAnalyticsTransformationNew-AzureStreamAnalyticsTransformation | New-AzStreamAnalyticsTransformation

New-AzureStreamAnalyticsTransformation -ResourceGroupName StreamAnalytics-Default-Central-US �File
"C:\Transformation.json" �JobName StreamingJob �Name StreamingJobTransform

New-AzStreamAnalyticsTransformation -ResourceGroupName StreamAnalytics-Default-Central-US �File
"C:\Transformation.json" �JobName StreamingJob �Name StreamingJobTransform

This PowerShell command creates a new output called "output" in the job StreamingJob. If an existing output with
this name is already defined, the cmdlet will ask whether or not to replace it.

Example 2

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command replaces the definition for "output" in the job StreamingJob.

Creates a new transformation within a Stream Analytics job, or updates the existing transformation.

The name of the transformation can be specified in the .json file or on the command line. If both are specified, the
name on the command line must be the same as the one in the file.

If you specify a transformation that already exists and do not specify the �Force parameter, the cmdlet will ask
whether or not to replace the existing transformation.

If you specify the �Force parameter and specify an existing transformation name, the transformation will be
replaced without confirmation.

For detailed information on the JSON file structure and contents, refer to the Create Transformation (Azure Stream
Analytics) section of the Stream Analytics Management REST API Reference Library.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command creates a new transformation called StreamingJobTransform in the job StreamingJob. If
an existing transformation is already defined with this name, the cmdlet will ask whether or not to replace it.

Example 2

Azure PowerShell 0.9.8:

https://msdn.microsoft.com/library/dn835007.aspx
https://go.microsoft.com/fwlink/?linkid=517301

New-AzureStreamAnalyticsTransformation -ResourceGroupName StreamAnalytics-Default-Central-US �File
"C:\Transformation.json" �JobName StreamingJob �Name StreamingJobTransform -Force

New-AzStreamAnalyticsTransformation -ResourceGroupName StreamAnalytics-Default-Central-US �File
"C:\Transformation.json" �JobName StreamingJob �Name StreamingJobTransform -Force

Remove-AzureStreamAnalyticsInput | Remove-AzStreamAnalyticsInputRemove-AzureStreamAnalyticsInput | Remove-AzStreamAnalyticsInput

Remove-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name EventStream

Remove-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name EventStream

Remove-AzureStreamAnalyticsJob | Remove-AzStreamAnalyticsJobRemove-AzureStreamAnalyticsJob | Remove-AzStreamAnalyticsJob

Remove-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �Name StreamingJob

Remove-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �Name StreamingJob

Remove-AzureStreamAnalyticsOutput | Remove-AzStreamAnalyticsOutputRemove-AzureStreamAnalyticsOutput | Remove-AzStreamAnalyticsOutput

Azure PowerShell 1.0:

This PowerShell command replaces the definition of StreamingJobTransform in the job StreamingJob.

Asynchronously deletes a specific input from a Stream Analytics job in Microsoft Azure.
If you specify the �Force parameter, the input will be deleted without confirmation.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command removes the input EventStream in the job StreamingJob.

Asynchronously deletes a specific Stream Analytics job in Microsoft Azure.
If you specify the �Force parameter, the job will be deleted without confirmation.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command removes the job StreamingJob.

Asynchronously deletes a specific output from a Stream Analytics job in Microsoft Azure.
If you specify the �Force parameter, the output will be deleted without confirmation.

Example 1

Azure PowerShell 0.9.8:

Remove-AzureStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name Output

Remove-AzStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name Output

Start-AzureStreamAnalyticsJob | Start-AzStreamAnalyticsJobStart-AzureStreamAnalyticsJob | Start-AzStreamAnalyticsJob

Start-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US -Name StreamingJob -
OutputStartMode CustomTime -OutputStartTime 2012-12-12T12:12:12Z

Start-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US -Name StreamingJob -
OutputStartMode CustomTime -OutputStartTime 2012-12-12T12:12:12Z

Stop-AzureStreamAnalyticsJob | Stop-AzStreamAnalyticsJobStop-AzureStreamAnalyticsJob | Stop-AzStreamAnalyticsJob

Stop-AzureStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �Name StreamingJob

Stop-AzStreamAnalyticsJob -ResourceGroupName StreamAnalytics-Default-Central-US �Name StreamingJob

Test-AzureStreamAnalyticsInput | Test-AzStreamAnalyticsInputTest-AzureStreamAnalyticsInput | Test-AzStreamAnalyticsInput

Azure PowerShell 1.0:

This PowerShell command removes the output Output in the job StreamingJob.

Asynchronously deploys and starts a Stream Analytics job in Microsoft Azure.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command starts the job StreamingJob with a custom output start time set to December 12, 2012,
12:12:12 UTC.

Asynchronously stops a Stream Analytics job from running in Microsoft Azure and de-allocates resources that
were that were being used. The job definition and metadata will remain available within your subscription through
both the Azure portal and management APIs, such that the job can be edited and restarted. You will not be charged
for a job in the stopped state.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command stops the job StreamingJob.

Tests the ability of Stream Analytics to connect to a specified input.

Example 1

Azure PowerShell 0.9.8:

Test-AzureStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name EntryStream

Test-AzStreamAnalyticsInput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob �Name
EntryStream

Test-AzureStreamAnalyticsOutput | Test-AzStreamAnalyticsOutputTest-AzureStreamAnalyticsOutput | Test-AzStreamAnalyticsOutput

Test-AzureStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name Output

Test-AzStreamAnalyticsOutput -ResourceGroupName StreamAnalytics-Default-Central-US �JobName StreamingJob
�Name Output

Get support

Next steps

Azure PowerShell 1.0:

This PowerShell command tests the connection status of the input EntryStream in StreamingJob.

Tests the ability of Stream Analytics to connect to a specified output.

Example 1

Azure PowerShell 0.9.8:

Azure PowerShell 1.0:

This PowerShell command tests the connection status of the output Output in StreamingJob.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Programmatically create a Stream Analytics job
monitor
3 minutes to read • Edit Online

Prerequisites

Create a project

This article demonstrates how to enable monitoring for a Stream Analytics job. Stream Analytics jobs that are
created via REST APIs, Azure SDK, or PowerShell do not have monitoring enabled by default. You can manually
enable it in the Azure portal by going to the job’s Monitor page and clicking the Enable button or you can
automate this process by following the steps in this article. The monitoring data will show up in the Metrics area of
the Azure portal for your Stream Analytics job.

Before you begin this process, you must have the following prerequisites:

Visual Studio 2019 or 2015
Azure .NET SDK downloaded and installed
An existing Stream Analytics job that needs to have monitoring enabled

Install-Package Microsoft.Azure.Management.StreamAnalytics
Install-Package Microsoft.Azure.Insights -Pre
Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory

<appSettings>
 <!--CSM Prod related values-->
 <add key="ResourceGroupName" value="RESOURCE GROUP NAME" />
 <add key="JobName" value="YOUR JOB NAME" />
 <add key="StorageAccountName" value="YOUR STORAGE ACCOUNT"/>
 <add key="ActiveDirectoryEndpoint" value="https://login.microsoftonline.com/" />
 <add key="ResourceManagerEndpoint" value="https://management.azure.com/" />
 <add key="WindowsManagementUri" value="https://management.core.windows.net/" />
 <add key="AsaClientId" value="1950a258-227b-4e31-a9cf-717495945fc2" />
 <add key="RedirectUri" value="urn:ietf:wg:oauth:2.0:oob" />
 <add key="SubscriptionId" value="YOUR AZURE SUBSCRIPTION ID" />
 <add key="ActiveDirectoryTenantId" value="YOUR TENANT ID" />
</appSettings>

1. Create a Visual Studio C# .NET console application.

2. In the Package Manager Console, run the following commands to install the NuGet packages. The first one
is the Azure Stream Analytics Management .NET SDK. The second one is the Azure Monitor SDK that will
be used to enable monitoring. The last one is the Azure Active Directory client that will be used for
authentication.

3. Add the following appSettings section to the App.config file.

Replace values for SubscriptionId and ActiveDirectoryTenantId with your Azure subscription and tenant IDs.
You can get these values by running the following PowerShell cmdlet:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-monitor-jobs.md
https://azure.microsoft.com/downloads/

Create management clients

Get-AzureAccount

 using System;
 using System.Configuration;
 using System.Threading;
 using Microsoft.Azure;
 using Microsoft.Azure.Management.Insights;
 using Microsoft.Azure.Management.Insights.Models;
 using Microsoft.Azure.Management.StreamAnalytics;
 using Microsoft.Azure.Management.StreamAnalytics.Models;
 using Microsoft.IdentityModel.Clients.ActiveDirectory;

public static string GetAuthorizationHeader()
{
 AuthenticationResult result = null;
 var thread = new Thread(() =>
 {
 try
 {
 var context = new AuthenticationContext(
 ConfigurationManager.AppSettings["ActiveDirectoryEndpoint"] +
 ConfigurationManager.AppSettings["ActiveDirectoryTenantId"]);
 result = context.AcquireToken(
 resource: ConfigurationManager.AppSettings["WindowsManagementUri"],
 clientId: ConfigurationManager.AppSettings["AsaClientId"],
 redirectUri: new Uri(ConfigurationManager.AppSettings["RedirectUri"]),
 promptBehavior: PromptBehavior.Always);
 }
 catch (Exception threadEx)
 {
 Console.WriteLine(threadEx.Message);
 }
 });

 thread.SetApartmentState(ApartmentState.STA);
 thread.Name = "AcquireTokenThread";
 thread.Start();
 thread.Join();

 if (result != null)
 {
 return result.AccessToken;
 }
 throw new InvalidOperationException("Failed to acquire token");
}

4. Add the following using statements to the source file (Program.cs) in the project.

5. Add an authentication helper method.

The following code will set up the necessary variables and management clients.

 string resourceGroupName = "<YOUR AZURE RESOURCE GROUP NAME>";
 string streamAnalyticsJobName = "<YOUR STREAM ANALYTICS JOB NAME>";

 // Get authentication token
 TokenCloudCredentials aadTokenCredentials =
 new TokenCloudCredentials(
 ConfigurationManager.AppSettings["SubscriptionId"],
 GetAuthorizationHeader());

 Uri resourceManagerUri = new
 Uri(ConfigurationManager.AppSettings["ResourceManagerEndpoint"]);

 // Create Stream Analytics and Insights management client
 StreamAnalyticsManagementClient streamAnalyticsClient = new
 StreamAnalyticsManagementClient(aadTokenCredentials, resourceManagerUri);
 InsightsManagementClient insightsClient = new
 InsightsManagementClient(aadTokenCredentials, resourceManagerUri);

Enable monitoring for an existing Stream Analytics job

WARNINGWARNING

// Get an existing Stream Analytics job
 JobGetParameters jobGetParameters = new JobGetParameters()
 {
 PropertiesToExpand = "inputs,transformation,outputs"
 };
 JobGetResponse jobGetResponse = streamAnalyticsClient.StreamingJobs.Get(resourceGroupName,
streamAnalyticsJobName, jobGetParameters);

// Enable monitoring
ServiceDiagnosticSettingsPutParameters insightPutParameters = new ServiceDiagnosticSettingsPutParameters()
{
 Properties = new ServiceDiagnosticSettings()
 {
 StorageAccountName = "<YOUR STORAGE ACCOUNT NAME>"
 }
};
insightsClient.ServiceDiagnosticSettingsOperations.Put(jobGetResponse.Job.Id, insightPutParameters);

Get support

The following code enables monitoring for an existing Stream Analytics job. The first part of the code performs a
GET request against the Stream Analytics service to retrieve information about the particular Stream Analytics job.
It uses the ID property (retrieved from the GET request) as a parameter for the Put method in the second half of
the code, which sends a PUT request to the Insights service to enable monitoring for the Stream Analytics job.

If you have previously enabled monitoring for a different Stream Analytics job, either through the Azure portal or
programmatically via the below code, we recommend that you provide the same storage account name that you used
when you previously enabled monitoring.

The storage account is linked to the region that you created your Stream Analytics job in, not specifically to the job itself.

All Stream Analytics jobs (and all other Azure resources) in that same region share this storage account to store monitoring
data. If you provide a different storage account, it might cause unintended side effects in the monitoring of your other
Stream Analytics jobs or other Azure resources.

The storage account name that you use to replace <YOUR STORAGE ACCOUNT NAME> in the following code should be a
storage account that is in the same subscription as the Stream Analytics job that you are enabling monitoring for.

For further assistance, try our Azure Stream Analytics forum.

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Next steps
Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Monitor and manage Stream Analytics jobs with
Visual Studio
2 minutes to read • Edit Online

Job summary

Job metrics

This article demonstrates how to monitor your Stream Analytics job in Visual Studio. Azure Stream Analytics tools
for Visual Studio provides a monitoring experience similar to Azure portal without having to leave the IDE. You can
begin to monitor a job as soon as you Submit to Azure from your Script.asaql, or you can monitor existing jobs
regardless of how they were created.

The Job Summary and Job Metrics give a quick snapshot of your job. At a glance, you can determine a job's
status and event information.]

You can collapse the Job Summary and click the Job Metrics tab to view a graph with important metrics. Check
and un-check metrics types to add and remove them from the graph.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-monitor-jobs-use-vs.md

Error monitoring

Get support

You can also monitor errors by clicking on the Errors tab.

For further assistance, try our Azure Stream Analytics forum.

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Next steps
Introduction to Azure Stream Analytics
Create an Azure Stream Analytics job with Visual Studio
Install Azure Stream Analytics tools for Visual Studio

Management .NET SDK: Set up and run analytics jobs
using the Azure Stream Analytics API for .NET
7 minutes to read • Edit Online

NOTENOTE

Prerequisites

Set up a project

Learn how to set up and run analytics jobs using the Stream Analytics API for .NET using the Management .NET
SDK. Set up a project, create input and output sources, transformations, and start and stop jobs. For your analytics
jobs, you can stream data from Blob storage or from an event hub.

See the management reference documentation for the Stream Analytics API for .NET.

Azure Stream Analytics is a fully managed service providing low-latency, highly available, scalable, complex event
processing over streaming data in the cloud. Stream Analytics enables customers to set up streaming jobs to
analyze data streams, and allows them to drive near real-time analytics.

We have updated the sample code in this article with Azure Stream Analytics Management .NET SDK v2.x version. For sample
code using the uses lagecy (1.x) SDK version, please see Use the Management .NET SDK v1.x for Stream Analytics.

Before you begin this article, you must have the following requirements:

Log in to your Azure account
Add-AzureAccount

Select the Azure subscription you want to use to create the resource group
Select-AzureSubscription -SubscriptionName <subscription name>

If Stream Analytics has not been registered to the subscription, remove the remark symbol (#) to
run the Register-AzProvider cmdlet to register the provider namespace
#Register-AzProvider -Force -ProviderNamespace 'Microsoft.StreamAnalytics'

Create an Azure resource group
New-AzureResourceGroup -Name <YOUR RESOURCE GROUP NAME> -Location <LOCATION>

Install Visual Studio 2019 or 2015.

Download and install Azure .NET SDK.

Create an Azure Resource Group in your subscription. The following example is a sample Azure PowerShell
script. For Azure PowerShell information, see Install and configure Azure PowerShell;

Set up an input source and output target for the job to connect to.

To create an analytics job, use the Stream Analytics API for .NET, first set up your project.

1. Create a Visual Studio C# .NET console application.

2. In the Package Manager Console, run the following commands to install the NuGet packages. The first one
is the Azure Stream Analytics Management .NET SDK. The second one is for Azure client authentication.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-dotnet-management-sdk.md
https://msdn.microsoft.com/library/azure/dn889315.aspx
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-dotnet-management-sdk-v1
https://azure.microsoft.com/downloads/
https://docs.microsoft.com/powershell/azure/overview

Create a Stream Analytics management client

Install-Package Microsoft.Azure.Management.StreamAnalytics -Version 2.0.0
Install-Package Microsoft.Rest.ClientRuntime.Azure.Authentication -Version 2.3.1

<appSettings>
 <add key="ClientId" value="1950a258-227b-4e31-a9cf-717495945fc2" />
 <add key="RedirectUri" value="urn:ietf:wg:oauth:2.0:oob" />
 <add key="SubscriptionId" value="YOUR SUBSCRIPTION ID" />
 <add key="ActiveDirectoryTenantId" value="YOUR TENANT ID" />
</appSettings>

 Get-AzureAccount

<Reference Include="System.Configuration" />

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Threading;
using System.Threading.Tasks;

using Microsoft.Azure.Management.StreamAnalytics;
using Microsoft.Azure.Management.StreamAnalytics.Models;
using Microsoft.Rest.Azure.Authentication;
using Microsoft.Rest;

private static async Task<ServiceClientCredentials> GetCredentials()
{
 var activeDirectoryClientSettings =
ActiveDirectoryClientSettings.UsePromptOnly(ConfigurationManager.AppSettings["ClientId"], new
Uri("urn:ietf:wg:oauth:2.0:oob"));
 ServiceClientCredentials credentials = await
UserTokenProvider.LoginWithPromptAsync(ConfigurationManager.AppSettings["ActiveDirectoryTenantId"],
activeDirectoryClientSettings);

 return credentials;
 }

3. Add the following appSettings section to the App.config file:

Replace values for SubscriptionId and ActiveDirectoryTenantId with your Azure subscription and tenant
IDs. You can get these values by running the following Azure PowerShell cmdlet:

4. Add the following reference in your .csproj file:

5. Add the following using statements to the source file (Program.cs) in the project:

6. Add an authentication helper method:

A StreamAnalyticsManagementClient object allows you to manage the job and the job components, such as
input, output, and transformation.

Add the following code to the beginning of the Main method:

 string resourceGroupName = "<YOUR AZURE RESOURCE GROUP NAME>";
 string streamingJobName = "<YOUR STREAMING JOB NAME>";
 string inputName = "<YOUR JOB INPUT NAME>";
 string transformationName = "<YOUR JOB TRANSFORMATION NAME>";
 string outputName = "<YOUR JOB OUTPUT NAME>";

 SynchronizationContext.SetSynchronizationContext(new SynchronizationContext());

 // Get credentials
 ServiceClientCredentials credentials = GetCredentials().Result;

 // Create Stream Analytics management client
 StreamAnalyticsManagementClient streamAnalyticsManagementClient = new
StreamAnalyticsManagementClient(credentials)
 {
 SubscriptionId = ConfigurationManager.AppSettings["SubscriptionId"]
 };

Create a Stream Analytics job

// Create a streaming job
StreamingJob streamingJob = new StreamingJob()
{
 Tags = new Dictionary<string, string>()
 {
 { "Origin", ".NET SDK" },
 { "ReasonCreated", "Getting started tutorial" }
 },
 Location = "West US",
 EventsOutOfOrderPolicy = EventsOutOfOrderPolicy.Drop,
 EventsOutOfOrderMaxDelayInSeconds = 5,
 EventsLateArrivalMaxDelayInSeconds = 16,
 OutputErrorPolicy = OutputErrorPolicy.Drop,
 DataLocale = "en-US",
 CompatibilityLevel = CompatibilityLevel.OneFullStopZero,
 Sku = new Sku()
 {
 Name = SkuName.Standard
 }
};
StreamingJob createStreamingJobResult =
streamAnalyticsManagementClient.StreamingJobs.CreateOrReplace(streamingJob, resourceGroupName,
streamingJobName);

Create a Stream Analytics input source

The resourceGroupName variable's value should be the same as the name of the resource group you created or
picked in the prerequisite steps.

To automate the credential presentation aspect of job creation, refer to Authenticating a service principal with
Azure Resource Manager.

The remaining sections of this article assume that this code is at the beginning of the Main method.

The following code creates a Stream Analytics job under the resource group that you have defined. You will add an
input, output, and transformation to the job later.

The following code creates a Stream Analytics input source with the blob input source type and CSV serialization.
To create an event hub input source, use EventHubStreamInputDataSource instead of
BlobStreamInputDataSource. Similarly, you can customize the serialization type of the input source.

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-authenticate-service-principal-powershell

// Create an input
StorageAccount storageAccount = new StorageAccount()
{
 AccountName = "<YOUR STORAGE ACCOUNT NAME>",
 AccountKey = "<YOUR STORAGE ACCOUNT KEY>"
};
Input input = new Input()
{
 Properties = new StreamInputProperties()
 {
 Serialization = new CsvSerialization()
 {
 FieldDelimiter = ",",
 Encoding = Encoding.UTF8
 },
 Datasource = new BlobStreamInputDataSource()
 {
 StorageAccounts = new[] { storageAccount },
 Container = "<YOUR STORAGE BLOB CONTAINER>",
 PathPattern = "{date}/{time}",
 DateFormat = "yyyy/MM/dd",
 TimeFormat = "HH",
 SourcePartitionCount = 16
 }
 }
};
Input createInputResult = streamAnalyticsManagementClient.Inputs.CreateOrReplace(input, resourceGroupName,
streamingJobName, inputName);

Test a Stream Analytics input source

// Test the connection to the input
ResourceTestStatus testInputResult = streamAnalyticsManagementClient.Inputs.Test(resourceGroupName,
streamingJobName, inputName);

Create a Stream Analytics output target

Input sources, whether from Blob storage or an event hub, are tied to a specific job. To use the same input source
for different jobs, you must call the method again and specify a different job name.

The TestConnection method tests whether the Stream Analytics job is able to connect to the input source as well
as other aspects specific to the input source type. For example, in the blob input source you created in an earlier
step, the method will check that the Storage account name and key pair can be used to connect to the Storage
account as well as check that the specified container exists.

Creating an output target is similar to creating a Stream Analytics input source. Like input sources, output targets
are tied to a specific job. To use the same output target for different jobs, you must call the method again and
specify a different job name.

The following code creates an output target (Azure SQL database). You can customize the output target's data type
and/or serialization type.

// Create an output
Output output = new Output()
{
 Datasource = new AzureSqlDatabaseOutputDataSource()
 {
 Server = "<YOUR DATABASE SERVER NAME>",
 Database = "<YOUR DATABASE NAME>",
 User = "<YOUR DATABASE LOGIN>",
 Password = "<YOUR DATABASE LOGIN PASSWORD>",
 Table = "<YOUR DATABASE TABLE NAME>"
 }
};
Output createOutputResult = streamAnalyticsManagementClient.Outputs.CreateOrReplace(output, resourceGroupName,
streamingJobName, outputName);

Test a Stream Analytics output target

// Test the connection to the output
ResourceTestStatus testOutputResult = streamAnalyticsManagementClient.Outputs.Test(resourceGroupName,
streamingJobName, outputName);

Create a Stream Analytics transformation

// Create a transformation
Transformation transformation = new Transformation()
{
 Query = "Select Id, Name from <your input name>", // '<your input name>' should be replaced with the value
you put for the 'inputName' variable above or in a previous step
 StreamingUnits = 1
};
Transformation createTransformationResult =
streamAnalyticsManagementClient.Transformations.CreateOrReplace(transformation, resourceGroupName,
streamingJobName, transformationName);

Start a Stream Analytics job

A Stream Analytics output target also has the TestConnection method for testing connections.

The following code creates a Stream Analytics transformation with the query "select * from Input" and specifies to
allocate one streaming unit for the Stream Analytics job. For more information on adjusting streaming units, see
Scale Azure Stream Analytics jobs.

Like input and output, a transformation is also tied to the specific Stream Analytics job it was created under.

After creating a Stream Analytics job and its input(s), output(s), and transformation, you can start the job by calling
the Start method.

The following sample code starts a Stream Analytics job with a custom output start time set to December 12, 2012,
12:12:12 UTC:

// Start a streaming job
StartStreamingJobParameters startStreamingJobParameters = new StartStreamingJobParameters()
{
 OutputStartMode = OutputStartMode.CustomTime,
 OutputStartTime = new DateTime(2012, 12, 12, 12, 12, 12, DateTimeKind.Utc)
};
streamAnalyticsManagementClient.StreamingJobs.Start(resourceGroupName, streamingJobName,
startStreamingJobParameters);

Stop a Stream Analytics job

// Stop a streaming job
streamAnalyticsManagementClient.StreamingJobs.Stop(resourceGroupName, streamingJobName);

Delete a Stream Analytics job

// Delete a streaming job
streamAnalyticsManagementClient.StreamingJobs.Delete(resourceGroupName, streamingJobName);

Get support

Next steps

You can stop a running Stream Analytics job by calling the Stop method.

The Delete method will delete the job as well as the underlying sub-resources, including input(s), output(s), and
transformation of the job.

For further assistance, try our Azure Stream Analytics forum.

You've learned the basics of using a .NET SDK to create and run analytics jobs. To learn more, see the following
articles:

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Management .NET SDK.
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://msdn.microsoft.com/library/azure/dn889315.aspx
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Implement CI/CD for Stream Analytics on IoT Edge
using APIs
3 minutes to read • Edit Online

Call APIs from different environments

LinuxLinux

curl -u { <username:password> } -H "Content-Type: application/json" -X { <method> } -d "{ <request body> }" {
<url> }

wget -q -O- --{ <method> } -data="<request body>" --header=Content-Type:application/json --auth-no-challenge -
-http-user="<Admin>" --http-password="<password>" <url>

WindowsWindows

$user = "<username>"
$pass = "<password>"
$encodedCreds = [Convert]::ToBase64String([Text.Encoding]::ASCII.GetBytes(("{0}:{1}" -f $user,$pass)))
$basicAuthValue = "Basic $encodedCreds"
$headers = New-Object "System.Collections.Generic.Dictionary[[String],[String]]"
$headers.Add("Content-Type", 'application/json')
$headers.Add("Authorization", $basicAuthValue)
$content = "<request body>"
$response = Invoke-RestMethod <url> -Method <method> -Body $content -Headers $Headers
echo $response

Create an ASA job on Edge

METHOD REQUEST URL

PUT https://management.azure.com/subscriptions/{subscription-
id}/resourcegroups/{resource-group-
name}/providers/Microsoft.StreamAnalytics/streamingjobs/{jo
b-name}?api-version=2017-04-01-preview

You can enable continuous integration and deployment for Azure Stream Analytics jobs using REST APIs. This
article provides examples on which APIs to use and how to use them. REST APIs aren't supported on Azure Cloud
Shell.

REST APIs can be called from both Linux and Windows. The following commands demonstrate proper syntax for
the API call. Specific API usage will be outlined in later sections of this article.

For Linux, you can use Curl or Wget commands:

For Windows, use Powershell:

To create Stream Analytics job, call the PUT method using the Stream Analytics API.

Example of command using curl:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-cicd-api.md

curl -u { <username:password> } -H "Content-Type: application/json" -X { <method> } -d "{ <request body> }"
https://management.azure.com/subscriptions/{subscription-id}/resourcegroups/{resource-group-
name}/providers/Microsoft.StreamAnalytics/streamingjobs/{jobname}?api-version=2017-04-01-preview

Example of request body in JSON:

{
 "location": "West US",
 "tags": { "key": "value", "ms-suppressjobstatusmetrics": "true" },
 "sku": {
"name": "Standard"
 },
 "properties": {
 "sku": {
"name": "standard"
 },
 "eventsLateArrivalMaxDelayInSeconds": 1,
 "jobType": "edge",
 "inputs": [
 {
 "name": "{inputname}",
 "properties": {
"type": "stream",
 "serialization": {
 "type": "JSON",
 "properties": {
 "fieldDelimiter": ",",
 "encoding": "UTF8"
 }
 },
 "datasource": {
 "type": "GatewayMessageBus",
 "properties": {
 }
 }
 }
 }
],
 "transformation": {
 "name": "{queryName}",
 "properties": {
 "query": "{query}"
 }
 },
 "package": {
 "storageAccount" : {
 "accountName": "{blobstorageaccountname}",
 "accountKey": "{blobstorageaccountkey}"
 },
 "container": "{blobcontaine}]"
 },
 "outputs": [
 {
 "name": "{outputname}",
 "properties": {
 "serialization": {
 "type": "JSON",
 "properties": {
 "fieldDelimiter": ",",
 "encoding": "UTF8"
 }
 },
 "datasource": {
 "type": "GatewayMessageBus",
 "properties": {
 }
 }
 }
 }
]
 }
}

Publish Edge package

METHOD REQUEST URL

POST https://management.azure.com/subscriptions/{subscriptionid
}/resourceGroups/{resourcegroupname}/providers/Microsoft
.StreamAnalytics/streamingjobs/{jobname}/publishedgepacka
ge?api-version=2017-04-01-preview

curl -d -X POST
https://management.azure.com/subscriptions/{subscriptionid}/resourceGroups/{resourcegroupname}/providers/Micro
soft.StreamAnalytics/streamingjobs/{jobname}/publishedgepackage?api-version=2017-04-01-preview

https://management.azure.com/subscriptions/{**subscriptionid**}/resourcegroups/{**resourcegroupname**}/provide
rs/Microsoft.StreamAnalytics/StreamingJobs/{**resourcename**}/OperationResults/023a4d68-ffaf-4e16-8414-
cb6f2e14fe23?api-version=2017-04-01-preview

curl -d –X GET
https://management.azure.com/subscriptions/{subscriptionid}/resourceGroups/{resourcegroupname}/providers/Micro
soft.StreamAnalytics/streamingjobs/{resourcename}/publishedgepackage?api-version=2017-04-01-preview

For more information, see the API documentation.

To publish a Stream Analytics job on IoT Edge, call the POST method using the Edge Package Publish API.

This asynchronous operation returns a status of 202 until the job has been successfully published. The location
response header contains the URI used to get the status of the process. While the process is running, a call to the
URI in the location header returns a status of 202. When the process finishes, the URI in the location header
returns a status of 200.

Example of an Edge package publish call using curl:

After making the POST call, you should expect a response with an empty body. Look for the URL located in the
HEAD of the response and record it for further use.

Example of the URL from the HEAD of response:

A Wait for one to two minutes before running the following command to make an API call with the URL you found
in the HEAD of the response. Retry the command if you do not get a 200 response.

Example of making API call with returned URL with curl:

The response includes the information you need to add to the Edge deployment script. The examples below show
what information you need to collect and where to add it in the deployment manifest.

Sample response body after publishing successfully:

https://docs.microsoft.com/rest/api/streamanalytics/stream-analytics-job

{
 edgePackageUrl : null
 error : null
 manifest : "{"supportedPlatforms":[{"os":"linux","arch":"amd64","features":[]},
{"os":"linux","arch":"arm","features":[]},{"os":"windows","arch":"amd64","features":
[]}],"schemaVersion":"2","name":"{jobname}","version":"1.0.0.0","type":"docker","settings":{"image":"
{imageurl}","createOptions":null},"endpoints":{"inputs":["\],"outputs":["{outputnames}"]},"twin":
{"contentType":"assignments","content":{"properties.desired":{"ASAJobInfo":"
{asajobsasurl}","ASAJobResourceId":"{asajobresourceid}","ASAJobEtag":"{etag}","PublishTimeStamp":"
{publishtimestamp}"}}}}"
 status : "Succeeded"
}

Sample of Deployment Manifest:

{
 "modulesContent": {
 "$edgeAgent": {
 "properties.desired": {
 "schemaVersion": "1.0",
 "runtime": {
 "type": "docker",
 "settings": {
 "minDockerVersion": "v1.25",
 "loggingOptions": "",
 "registryCredentials": {}
 }
 },
 "systemModules": {
 "edgeAgent": {
 "type": "docker",
 "settings": {
 "image": "mcr.microsoft.com/azureiotedge-agent:1.0",
 "createOptions": "{}"
 }
 },
 "edgeHub": {
 "type": "docker",
 "status": "running",
 "restartPolicy": "always",
 "settings": {
 "image": "mcr.microsoft.com/azureiotedge-hub:1.0",
 "createOptions": "{}"
 }
 }
 },
 "modules": {
 "<asajobname>": {
 "version": "1.0",
 "type": "docker",
 "status": "running",
 "restartPolicy": "always",
 "settings": {
 "image": "<settings.image>",
 "createOptions": "<settings.createOptions>"
 }
 "version": "<version>",
 "env": {
 "PlanId": {
 "value": "stream-analytics-on-iot-edge"
 }
 }
 }
 },
 "$edgeHub": {
 "properties.desired": {
 "schemaVersion": "1.0",
 "routes": {
 "route": "FROM /* INTO $upstream"
 },
 "storeAndForwardConfiguration": {
 "timeToLiveSecs": 7200
 }
 }
 },
 "<asajobname>": {
 "properties.desired": {<twin.content.properties.desired>}
 }
 }
}

Next steps

After the configuration of the deployment manifest, refer to Deploy Azure IoT Edge modules with Azure CLI for
deployment.

Azure Stream Analytics on IoT Edge
ASA on IoT Edge tutorial
Develop Stream Analytics Edge jobs using Visual Studio tools

https://docs.microsoft.com/en-us/azure/iot-edge/how-to-deploy-modules-cli
https://docs.microsoft.com/azure/iot-edge/tutorial-deploy-stream-analytics

Export an Azure Stream Analytics job Azure Resource
Manager template
2 minutes to read • Edit Online

Open a job in VS Code

Compile the script

Azure Resource Manager templates allow you to implement infrastructure as code. The template is a JavaScript
Object Notation (JSON) file that defines the infrastructure and configuration for your resources. You specify the
resources to deploy and the properties for those resources.

You can redeploy an Azure Stream Analytics job by exporting the Azure Resource Manager template.

Before you can export a template, you must first open an existing Stream Analytics job in Visual Studio Code.

To export a job to a local project, locate the job you wish to export in the Stream Analytics Explorer in the Azure
portal. From the Query page, select Open in Visual Studio. Then select Visual Studio Code.

For more information on using Visual Studio Code to manage Stream Analytics jobs, see the Visual Studio Code
quickstart.

The next step is to compile the job script to an Azure Resource Manager template. Before you compile the script,
ensure that your job has at least one input and one output configured. If no input or output is configured, you need
to configure the input and output first.

1. In Visual Studio Code, navigate to your job's Transformation.asaql file.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/resource-manager-export.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview

Complete the parameters file

Deploy using templates

2. Right-click the Transformation.asaql file and select ASA: Compile Script from the menu.

3. Notice that a Deploy folder appears in your Stream Analytics job workspace.

4. Explore the JobTemplate.json file, which is the Azure Resource Management template used to deploy.

Next, complete the Azure Resource Management template parameters file.

1. Open the JobTemplate.parameters.json file located in the Deploy folder of your Stream Analytics job
workspace in Visual Studio Code.

2. Notice that the input and output keys are null. Replace the null values with the actual access keys for your
input and output resources.

3. Save the parameters file.

You're ready to deploy your Azure Stream Analytics job using the Azure Resource Manager templates you
generated in the previous section.

In a PowerShell window, run the following command. Be sure to reaplce the ResourceGroupName, TemplateFile,
and TemplateParameterFile with your actual resource group name, and the complete file paths to the
JobTemplate.json and JobTemplate.parameters.json files in the Deploy Folder of your job workspace.

If you don't have Azure PowerShell configured, follow the steps in Install Azure PowerShell module.

https://docs.microsoft.com/powershell/azure/install-az-ps

New-AzResourceGroupDeployment -ResourceGroupName "<your resource group>" -TemplateFile "<path to
JobTemplate.json>" -TemplateParameterFile "<path to JobTemplate.parameters.json>"

Next steps
Test Azure Stream Analytics jobs locally with live input using Visual Studio Code

Explore Azure Stream Analytics jobs with Visual Studio Code (Preview)

Install Azure Stream Analytics tools for Visual Studio
2 minutes to read • Edit Online

Install

Install for Visual Studio 2019 and 2017Install for Visual Studio 2019 and 2017

Visual Studio 2019 and Visual Studio 2017 support Azure Data Lake and Stream Analytics Tools. This article
describes how to install and uninstall the tools.

For more information on using the tools, see Quickstart: Create an Azure Stream Analytics job by using Visual
Studio.

Visual Studio Enterprise (Ultimate/Premium), Professional, and Community editions support the tools. Express
edition and Visual Studio for Mac don't support them.

We recommend Visual Studio 2019.

Azure Data Lake and Stream Analytics Tools are part of the Azure development and Data storage and
processing workloads. Enable either one of these two workloads during installation. If Visual Studio is already
installed, select Tools > Get Tools and Features to add workloads.

Download Visual Studio 2019 (Preview 2 or above) or Visual Studio 2017 (15.3 or above) and follow
instructions to install.

Select the Data storage and processing workload as shown:

Select the Azure development workload as shown:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-tools-for-visual-studio-install.md
https://www.visualstudio.com/

Install for Visual Studio 2015 and 2013Install for Visual Studio 2015 and 2013

Update

After you add the workload, update the tools. This procedure refers to Visual Studio 2019:

1. Select Extensions > Manage Extensions.

2. In Manage Extensions, select Updates and choose Azure Data Lake and Stream Analytics Tools.

3. Select Update to install the latest extension.

Visual Studio Enterprise (Ultimate/Premium), Professional, and Community editions support the tools. Express
edition doesn't support them.

Install Visual Studio 2015 or Visual Studio 2013 Update 4.
Install the Microsoft Azure SDK for .NET version 2.7.1 or above by using the Web platform installer.
Install Microsoft Azure Data Lake and Stream Analytics Tools for Visual Studio.

https://www.microsoft.com/web/downloads/platform.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=49504

Uninstall

For Visual Studio 2019 and Visual Studio 2017, a new version reminder shows up as a Visual Studio notification.

For Visual Studio 2015 and Visual Studio 2013, the tools check for new versions automatically. Follow the
instructions to install the latest version.

You can uninstall Azure Data Lake and Stream Analytics Tools. For Visual Studio 2019 or Visual Studio 2017,
select Tools > Get Tools and Features. In Modifying, unselect Azure Data Lake and Stream Analytics
Tools. It appears under either the Data storage and processing workload or the Azure development
workload.

To uninstall from Visual Studio 2015 or Visual Studio 2013, go to Control Panel > Programs and Features.
Uninstall Microsoft Azure Data Lake and Stream Analytics Tools for Visual Studio.

Test Stream Analytics queries locally with Visual
Studio
2 minutes to read • Edit Online

Test your query

Add local inputAdd local input

You can use Azure Stream Analytics tools for Visual Studio to test your Stream Analytics jobs locally with sample
data or live data.

Use this Quickstart to learn how to create a Stream Analytics job using Visual Studio.

In your Azure Stream Analytics project, double-click Script.asaql to open the script in the editor. You can compile
the query to see if there are any syntax errors. The query editor supports IntelliSense, syntax coloring, and an
error marker.

To validate your query against local static data, right-click the input and select Add local input.

In the pop-up window, select sample data from your local path and Save.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-vs-tools-local-run.md

A file named local_EntryStream.json is added automatically to your inputs folder.

Select Run Locally in the query editor. Or you can press F5.

The output can be viewed in a table format directly from Visual Studio.

You can find the output path from the console output. Press any key to open the result folder.

Check the results in the local folder.

Sample inputSample input

Next steps

You can also collect sample input data from your input sources to a local file. Right-click the input configuration
file, and select Sample Data.

You can only sample data streaming from Event Hubs or IoT Hubs. Other input sources are not supported. In the
pop-up dialog box, fill in the local path to save the sample data and select Sample.

You can see the progress in the Output window.

Quickstart: Create a Stream Analytics job using Visual Studio

Use Visual Studio to view Azure Stream Analytics jobs
Test live data locally using Azure Stream Analytics tools for Visual Studio (Preview)
Tutorial: Deploy an Azure Stream Analytics job with CI/CD using Azure DevOps
Continuously integrate and develop with Stream Analytics tools

Test live data locally using Azure Stream Analytics
tools for Visual Studio (Preview)
2 minutes to read • Edit Online

Testing options

INPUT OUTPUT JOB TYPE

Local static data Local static data Cloud/Edge

Live input data Local static data Cloud

Live input data Live output data Cloud

Local testing with live data

Azure Stream Analytics tools for Visual Studio allows you to test jobs locally from the IDE using live event
streams from Azure Event Hub, IoT Hub, and Blob Storage. Live data local testing can't replace the performance
and scalability testing you can perform in the cloud, but you can save time during functional testing by not
having to submit to the cloud each time you want to test your Stream Analytics job. This feature is in preview and
shouldn't be used for production workloads.

The following local testing options are supported:

1. After you've created an Azure Stream Analytics cloud project in Visual Studio, open script.asaql. The local
testing uses local input and local output by default.

2. To test live data, choose Use Cloud Input from the dropdown box.

3. Set the Start Time to define when the job will start processing input data. The job might need to read
input data ahead of time to ensure accurate results. The default time is set to 30 minutes ahead of the
current time.

4. Click Run Locally. A console window will appear with the running progress and job metrics. If you want
to stop the process, you can do so manually.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-live-data-local-testing.md

Limitations

The output results are refreshed every three seconds with the first 500 output rows in the local run result
window, and the output files are placed in your project path ASALocalRun folder. You can also open the
output files by clicking Open Results Folder button in the local run result window.

5. If you want to output the results to your cloud output sinks, choose Output to Cloud from the second
dropdown box. Power BI and Azure Data Lake Storage are not supported output sinks.

Next steps

Power BI and Azure Data Lake Storage are not supported output sinks due to authentication model
limitations.

Only cloud input options have time policies support, while local input options do not.

Create a Stream Analytics job by using the Azure Stream Analytics tools for Visual Studio
Test Stream Analytics queries locally with Visual Studio
Use Visual Studio to view Azure Stream Analytics jobs

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events

Use Visual Studio to view Azure Stream Analytics
jobs
2 minutes to read • Edit Online

Explore the job view

Open the job viewOpen the job view

Azure Stream Analytics tools for Visual Studio makes it easy for developers to manage their Stream Analytics
jobs directly from the IDE. With Azure Stream Analytics tools, you can:

Create new jobs
Start, stop, and monitor jobs
Check job results
Export existing jobs to a project
Test input and output connections
Run queries locally

Learn how to install Azure Stream Analytics tools for Visual Studio.

You can use the job view to interact with Azure Stream Analytics jobs from Visual Studio.

1. In Server Explorer, select Stream Analytics jobs and then select Refresh. Your job should appear under
Stream Analytics jobs.

2. Expand your job node, and double-click on the Job View node to open a job view.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-vs-tools.md

Start and stop jobsStart and stop jobs

Check job results

Azure Stream Analytics jobs can be fully managed from the job view in Visual Studio. Use the controls to start,
stop, or delete a job.

Stream Analytics tools for Visual Studio currently supports output preview for Azure Data Lake Storage and blob
storage. To view result, simply double click the output node of the job diagram in Job View and enter the
appropriate credentials.

 Export jobs to a project
There are two ways you can export an existing job to a project.

1. In Server Explorer, under the Stream Analytics Jobs node, right-click the job node. Select Export to New
Stream Analytics Project.

The generated project appears in Solution Explorer.

2. In the job view, select Generate Project.

Test connections

Next steps

Input and output connections can be tested from the Job View by selecting an option from the Test Connection
dropdown.

The Test Connection results are displayed in the Output window.

Monitor and manage Azure Stream Analytics jobs using Visual Studio
Quickstart: Create a Stream Analytics job using Visual Studio
Tutorial: Deploy an Azure Stream Analytics job with CI/CD using Azure Pipelines
Continuously integrate and develop with Stream Analytics tools

Debug Azure Stream Analytics queries locally using
job diagram in Visual Studio
3 minutes to read • Edit Online

Debug a query using job diagram

NOTENOTE

Start local testingStart local testing

NOTENOTE

View the intermediate result setView the intermediate result set

Jobs that output no result or unexpected results are common troubleshooting scenarios for streaming queries. You
can use the job diagram while testing your query locally in Visual Studio to examine the intermediate result set and
metrics for each step. Job diagrams can help you quickly isolate the source of a problem when you troubleshoot
issues.

An Azure Stream Analytics script is used to transform input data to output data. The job diagram shows how data
flows from input sources (Event Hub, IoT Hub, etc.) through multiple query steps and, finally, to output sinks. Each
query step is mapped to a temporary result set defined in the script using a WITH statement. You can view the data
as well as metrics of each query step in each intermediate result set to find the source of an issue.

This job diagram only shows the data and metrics for local testing in a single node. It should not be used for performance
tuning and troubleshooting.

Use this Quickstart to learn how to create a Stream Analytics job using Visual Studio or export an existing job to a
local project. If you want to test the query with local input data, follow these instructions. If you want to test with
live input, move to the next step.

If you export a job to local project and want to test against a live input stream, you need to specify the credentials for all
inputs again.

Choose the input and output source from the script editor and select Run locally. The job diagram appears on the
right side.

1. Select the query step to navigate to the script. You are automatically directed to the corresponding script in
the editor on the left.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/debug-locally-using-job-diagram.md

View step metricsView step metrics

Input sources (Live stream)Input sources (Live stream)

2. Select the query step and select Preview in the popped up dialog. The result set is shown in a tab in the
bottom result window.

In this section, you explore the metrics available for each part of the diagram.

METRIC DESCRIPTION

TaxiRide The name of the input.

Event Hub Input source type.

Events The number of events read.

Backlogged Event Sources How many more messages need to be read for Event Hubs
and IoT Hub inputs.

Events in Bytes The number of bytes read.

Degraded Events The count of events that had an issue other than with
deserialization.

Early Events The number of events that have an application timestamp
before the high watermark.

Late Events The number of events that have an application timestamp
after the high watermark.

Event Sources The number of data units read. For example, the number of
blobs.

Input sources (Local input)Input sources (Local input)

METRIC DESCRIPTION

TaxiRide The name of the input.

Row Count The number of rows generated from the step.

Data Size The size of data generated from this step.

Local input Use local data as input.

Query stepsQuery steps

METRIC DESCRIPTION

TripData The name of the temporary result set.

Row Count The number of rows generated from the step.

Data Size The size of data generated from this step.

Output sinks (Live output)Output sinks (Live output)

METRIC DESCRIPTION

regionaggEH The name of the output.

Events The number of events output to sinks.

Output sinks (Local output)Output sinks (Local output)

METRIC DESCRIPTION

regionaggEH The name of the output.

Local Output Result output to a local file.

Row Count The number of rows output to the local file.

Data Size The size of data output to the local file.

METRIC DESCRIPTION

Close job diagramClose job diagram

View job level metrics and stop runningView job level metrics and stop running

Limitations

Next steps

If you don't need the job diagram anymore, select Close on the top right corner. After closing the diagram window,
you need to start local testing again to see it.

Other job level metrics shows up in the pop up console. Press Ctrl+C in the console if you want to stop the job.

Power BI and Azure Data Lake Storage Gen1 output sinks are not supported due to authentication model
limitations.

Only cloud input options have time policies support, while local input options do not.

Quickstart: Create a Stream Analytics job using Visual Studio
Use Visual Studio to view Azure Stream Analytics jobs
Test live data locally using Azure Stream Analytics tools for Visual Studio (Preview)

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events

Develop Stream Analytics Edge jobs using Visual
Studio tools
4 minutes to read • Edit Online

Prerequisites

Create a Stream Analytics Edge project

In this tutorial, you learn how to use Stream Analytics tools for Visual Studio. You learn how to author, debug, and
create your Stream Analytics Edge jobs. After you create and test the job, you can go to the Azure portal to deploy
it to your devices.

You need the following prerequisites to complete this tutorial:

Install Visual Studio 2019, Visual Studio 2015, or Visual Studio 2013 Update 4. Enterprise
(Ultimate/Premium), Professional, and Community editions are supported. Express edition isn't supported.

Follow the installation instructions to install Stream Analytics tools for Visual Studio.

From Visual Studio, select File > New > Project. Navigate to the Templates list on the left > expand Azure
Stream Analytics > Stream Analytics Edge > Azure Stream Analytics Edge Application. Provide a Name,
Location, and Solution name for your project and select OK.

After the project gets created, navigate to the Solution Explorer to view the folder hierarchy.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-tools-for-visual-studio-edge-jobs.md
https://visualstudio.microsoft.com/downloads/
https://www.visualstudio.com/vs/older-downloads/
https://www.microsoft.com/download/details.aspx?id=45326

Choose the correct subscription

Define inputs

Define outputs

1. From your Visual Studio View menu, select Server Explorer.

2. Right click on Azure > Select Connect to Microsoft Azure Subscription > and then sign in with your
Azure account.

1. From the Solution Explorer, expand the Inputs node you should see an input named EdgeInput.json.
Double-click to view its settings.

2. Set Source Type to Data Stream. Then set Source to Edge Hub, Event Serialization Format to Json, and
Encoding to UTF8. Optionally, you can rename the Input Alias, let’s leave it as is for this example. In case
you rename the input alias, use the name you specified when defining the query. Select Save to save the
settings.

1. From the Solution Explorer, expand the Outputs node you should see an output named
EdgeOutput.json. Double-click to view its settings.

2. Make sure to set Sink to select Edge Hub, set Event Serialization Format to Json, set Encoding to UTF8,

Define the transformation query

CATEGORY COMMAND

Other operators

SELECT * INTO EdgeOutput
FROM EdgeInput

Test the job locally

and set Format Array. Optionally, you can rename the Output Alias, let’s leave it as is for this example. In
case you rename the output alias, use the name you specified when defining the query. Select Save to save
the settings.

Stream Analytics jobs deployed in the Stream Analytics IoT Edge environments support most of Stream Analytics
Query Language reference. However, the following operations aren't yet supported for Stream Analytics Edge
jobs:

PARTITION BY
TIMESTAMP BY OVER
JavaScript UDF
User-defined aggregates (UDA)
GetMetadataPropertyValue
Using more than 14 aggregates in a single step

When you create a Stream Analytics Edge job in the portal, the compiler will automatically warn you if you aren't
using a supported operator.

From your Visual Studio, define the following transformation query in the query editor (script.asaql file)

To test the query locally, you should upload the sample data. You can get sample data by downloading Registration
data from the GitHub repository and save it to your local computer.

1. To upload sample data, right click on EdgeInput.json file and choose Add Local Input

2. In the pop-up window > Browse the sample data from your local path > Select Save.

https://msdn.microsoft.com/azure/stream-analytics/reference/stream-analytics-query-language-reference?f=255&mspperror=-2147217396
https://github.com/azure/azure-stream-analytics/blob/master/sample data/registration.json

Submit the job to Azure

3. A file named local_EdgeInput.json is added automatically to your inputs folder.

4. You can either run it locally or submit to Azure. To test the query, select Run Locally.

5. The command prompt window shows the status of the job. When the job runs successfully, it creates a
folder that looks like "2018-02-23-11-31-42" in your project folder path "Visual Studio
2015\Projects\MyASAEdgejob\MyASAEdgejob\ASALocalRun\2018-02-23-11-31-42". Navigate to the
folder path to view the results in the local folder :

You can also sign in to the Azure portal and verify that the job is created.

1. Before you submit the job to Azure, you must connect to your Azure Subscription. Open Server Explorer
> right click on Azure > Connect to Microsoft Azure subscription > sign in to your Azure subscription.

2. To submit the job to Azure, navigate to the query editor > select Submit to Azure.

Manage the job

3. A pop-up window opens. Choose to update an existing Stream Analytics Edge job or create a new one.
When you update an existing job, it will replace all the job configuration, in this scenario, you'll publish a
new job. Select Create a New Azure Stream Analytics Job > enter a name for your job something like
MyASAEdgeJob > choose the required Subscription, Resource Group, and Location > Select Submit.

Now your Stream Analytics Edge job has been created. You can refer to the Run jobs on IoT Edge tutorial to
learn how to deploy it to your devices.

You can view the status of job and the job diagram from the Server Explorer. From Stream Analytics in Server
Explorer, expand the subscription and the resource group where you deployed the Stream Analytics Edge job.
You can view the MyASAEdgejob with status Created. Expand your job node and double-click on it to open the
job view.

Next steps

The job view window provides you with operations such as refreshing the job, deleting the job, and opening the
job from Azure portal.

More information on Azure IoT Edge
ASA on IoT Edge tutorial
Send feedback to the team using this survey

https://docs.microsoft.com/en-us/azure/iot-edge/about-iot-edge
https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-deploy-stream-analytics
https://forms.office.com/pages/responsepage.aspx?id=v4j5cvggr0grqy180bhbr2czagz-i_9cg6nhazlh9ypumjnem0rdvu9cvtbqwddytlk0udnttfdutc4u

Use the Azure Stream Analytics CI/CD NuGet
package for integration and development
2 minutes to read • Edit Online

NOTENOTE

MSBuild

./build/msbuild /t:build [Your Project Full Path]
/p:CompilerTaskAssemblyFile=Microsoft.WindowsAzure.StreamAnalytics.Common.CompileService.dll
/p:ASATargetsFilePath="[NuGet Package Local Path]\build\StreamAnalytics.targets"

NOTENOTE

This article describes how to use the Azure Stream Analytics CI/CD NuGet package to set up a continuous
integration and deployment process.

Use version 2.3.0000.0 or above of Stream Analytics tools for Visual Studio to get support for MSBuild.

A NuGet package is available: Microsoft.Azure.Stream Analytics.CICD. It provides the MSBuild, local run, and
deployment tools that support the continuous integration and deployment process of Stream Analytics Visual
Studio projects.

The NuGet package can be used only with the 2.3.0000.0 or above version of Stream Analytics Tools for Visual Studio. If you
have projects created in previous versions of Visual Studio tools, just open them with the 2.3.0000.0 or above version and
save. Then the new capabilities are enabled.

For more information, see Stream Analytics tools for Visual Studio.

Like the standard Visual Studio MSBuild experience, to build a project you have two options. You can right-click
the project, and then choose Build. You also can use MSBuild in the NuGet package from the command line.

When a Stream Analytics Visual Studio project builds successfully, it generates the following two Azure Resource
Manager template files under the bin/[Debug/Retail]/Deploy folder :

[ProjectName].JobTemplate.json

[ProjectName].JobTemplate.parameters.json

Resource Manager template file

Resource Manager parameters file

The default parameters in the parameters.json file are from the settings in your Visual Studio project. If you want
to deploy to another environment, replace the parameters accordingly.

For all the credentials, the default values are set to null. You are required to set the values before you deploy to the cloud.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-tools-for-visual-studio-cicd.md
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio
https://www.nuget.org/packages/microsoft.azure.streamanalytics.cicd/
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-tools-for-visual-studio

"Input_EntryStream_sharedAccessPolicyKey": {
 "value": null
 },

Command-line tool
Build the projectBuild the project

./tools/SA.exe build -Project [Your Project Full Path] [-OutputPath <outputPath>]

Test the script locallyTest the script locally

localrun -Project [ProjectFullPath]

Generate a job definition file to use with the Stream Analytics PowerShell APIGenerate a job definition file to use with the Stream Analytics PowerShell API

arm -JobTemplate <templateFilePath> -JobParameterFile <jobParameterFilePath> [-OutputFile <asaArmFilePath>]

./tools/SA.exe arm -JobTemplate "ProjectA.JobTemplate.json" -JobParameterFile
"ProjectA.JobTemplate.parameters.json" -OutputFile "JobDefinition.json"

Next steps

Learn more about how to deploy with a Resource Manager template file and Azure PowerShell. Learn more
about how to use an object as a parameter in a Resource Manager template.

To use Managed Identity for Azure Data Lake Store Gen1 as output sink, you need to provide Access to the
service principal using PowerShell before deploying to Azure. Learn more about how to deploy ADLS Gen1 with
Managed Identity with Resource Manager template.

The NuGet package has a command-line tool called SA.exe. It supports project build and local testing on an
arbitrary machine, which you can use in your continuous integration and continuous delivery process.

The deployment files are placed under the current directory by default. You can specify the output path by using
the following -OutputPath parameter:

If your project has specified local input files in Visual Studio, you can run an automated script test by using the
localrun command. The output result is placed under the current directory.

The arm command takes the job template and job template parameter files generated through build as input.
Then it combines them into a job definition JSON file that can be used with the Stream Analytics PowerShell API.

Example:

Quickstart: Create an Azure Stream Analytics cloud job in Visual Studio
Test Stream Analytics queries locally with Visual Studio
Explore Azure Stream Analytics jobs with Visual Studio

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy
https://docs.microsoft.com/azure/architecture/building-blocks/extending-templates/objects-as-parameters

Test Stream Analytics queries locally with sample data
using Visual Studio Code
2 minutes to read • Edit Online

Prerequisites

Prepare sample data

Define a local input

You can use Azure Stream Analytics tools for Visual Studio Code to test your Stream Analytics jobs locally with
sample data. You can find the query results in JSON files in the LocalRunOutputs folder of your project.

Install .NET core SDK and restart Visual Studio Code.

Use this quickstart to learn how to create a Stream Analytics job using Visual Studio Code.

You need to prepare sample input data files first. If you already have some sample data files on your machine, you
can skip this step and move on to the next one.

1. Click Preview data in your input configuration file from the top line. Some input data will be fetched from
IoT Hub and shown in the preview window. Note that this may take a while.

2. Once the data is shown, click Save as to save the data to a local file.

1. Click input.json under Inputs folder in your Stream Analytics project. Then select Add local input from
the top line.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/visual-studio-code-local-run.md
https://dotnet.microsoft.com/download

You can also use Ctrl+Shift+P to open the command palette and enter ASA: Add Input.

2. Select Local Input.

3. Select + New Local Input.

4. Enter the same input alias that you used in your query.

5. In the newly generated LocalInput_Input.json file, enter the file path where your local data file is located.

6. Select Preview Data to preview the input data. The serialization type for your data is automatically
detected if its JSON or CSV. Use the selector to view your data in Table or Raw format. The following
table is an example of data in the Table format:

The following table is an example of data in the Raw format:

Run queries locally
Return to your query editor, and select Run locally. Then select Use local input from the dropdown list.

The result is shown in the right window. You can click Run to test again. You can also select Open in folder to see
the result files in file explorer and further open them with other tools. Note that the result files are only available in
JSON format.

Next steps
Test Azure Stream Analytics jobs locally with live input using Visual Studio Code

Explore Azure Stream Analytics jobs with Visual Studio Code (Preview)

Test Stream Analytics queries locally against live
stream input by using Visual Studio Code
2 minutes to read • Edit Online

Prerequisites

Define a live stream input

You can use Azure Stream Analytics Tools for Visual Studio Code to test your Stream Analytics jobs locally against
live stream input. The input can come from a source like Azure Event Hubs or Azure IoT Hub. The output results
are sent as JSON files to a folder in your project called LocalRunOutputs.

Install the .NET Core SDK and restart Visual Studio Code.

Use this quickstart to learn how to create a Stream Analytics job by using Visual Studio Code.

1. Right-click the Inputs folder in your Stream Analytics project. Then select ASA: Add Input from the
context menu.

You can also select Ctrl+Shift+P to open the command palette and enter ASA: Add Input.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/visual-studio-code-local-run-live-input.md
https://dotnet.microsoft.com/download

2. Choose an input source type from the drop-down list.

3. If you added the input from the command palette, choose the Stream Analytics query script that will use
the input. It should be automatically populated with the file path to myASAproj.asaql.

4. Choose Select from your Azure Subscriptions from the drop-down menu.

5. Configure the newly generated JSON file. You can use the CodeLens feature to help you enter a string,
select from a drop-down list, or change the text directly in the file. The following screenshot shows Select
from your Subscriptions as an example.

Preview input

Run queries locally

To make sure that the input data is coming, select Preview data in your live input configuration file from the top
line. Some input data comes from an IoT hub and is shown in the preview window. The preview might take a few
seconds to appear.

Next steps

Return to your query editor, and select Run locally. Then select Use Live Input from the drop-down list.

The result is shown in the right window and refreshed every 3 seconds. You can select Run to test again. You can
also select Open in folder to see the result files in File Explorer and open them with Visual Studio Code or a tool
like Excel. Note that the result files are available only in JSON format.

The default time for the job to start creating output is set to Now. You can customize the time by selecting the
Output start time button in the result window.

Explore Azure Stream Analytics jobs with Visual Studio Code (preview)

Set up CI/CD pipelines by using the npm package

Deploy an Azure Stream Analytics job using CI/CD
npm package
5 minutes to read • Edit Online

Build the VS Code project

azure-streamanalytics-cicd build -scriptPath <scriptFullPath> -outputPath <outputPath>

azure-streamanalytics-cicd build -scriptPath "/Users/roger/projects/samplejob/script.asaql"

You can use the Azure Stream Analytics CI/CD npm package to set up a continuous integration and deployment
process for your Stream Analytics jobs. This article describes how to use the npm package in general with any
CI/CD system, as well as specific instructions for deployment with Azure Pipelines.

For more information about deploying with Powershell, see deploy with a Resource Manager template file and
Azure PowerShell. You can also learn more about how to use an object as a parameter in a Resource Manager
template.

You can enable continuous integration and deployment for Azure Stream Analytics jobs using the asa-
streamanalytics-cicd npm package. The npm package provides the tools to generate Azure Resource Manager
templates of Stream Analytics Visual Studio Code projects. It can be used on Windows, macOS, and Linux without
installing Visual Studio Code.

You can download the package directly, or install it globally via the npm install -g azure-streamanalytics-cicd

command. This is the recommended approach, which can also be used in a PowerShell or Azure CLI script task of
a build pipeline in Azure Pipelines.

Once you have installed the package, use the following command to output the Azure Resource Manager
templates. The scriptPath argument is the absolute path to the asaql file in your project. Make sure the
asaproj.json and JobConfig.json files are in the same folder with the script file. If the outputPath is not specified,
the templates will be placed in the Deploy folder under the project's bin folder.

Example (on macOS)

When a Stream Analytics Visual Studio Code project builds successfully, it generates the following two Azure
Resource Manager template files under the bin/[Debug/Retail]/Deploy folder :

[ProjectName].JobTemplate.json

[ProjectName].JobTemplate.parameters.json

Resource Manager template file

Resource Manager parameters file

The default parameters in the parameters.json file are from the settings in your Visual Studio Code project. If you
want to deploy to another environment, replace the parameters accordingly.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/setup-cicd-vs-code.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy
https://docs.microsoft.com/azure/architecture/building-blocks/extending-templates/objects-as-parameters
https://www.npmjs.com/package/azure-streamanalytics-cicd
https://docs.npmjs.com/downloading-and-installing-packages-globally

NOTENOTE

"Input_EntryStream_sharedAccessPolicyKey": {
 "value": null
 },

Deploy with Azure Pipelines

For all the credentials, the default values are set to null. You are required to set the values before you deploy to the cloud.

This section details how to create Azure Pipelines build and release pipelines using npm.

Open a web browser and navigate to your Azure Stream Analytics Visual Studio Code project.

1. Under Pipelines in the left navigation menu, select Builds. Then select New pipeline

2. Select Use the classic editor to create a pipeline without YAML.

3. Select your source type, team project, and repository. Then select Continue.

https://docs.microsoft.com/azure/devops/pipelines/get-started-designer?view=vsts&tabs=new-nav
https://docs.microsoft.com/azure/devops/pipelines/release/define-multistage-release-process?view=vsts

Add npm taskAdd npm task

4. On the Choose a template page, select Empty job.

1. On the Tasks page, select the plus sign next to Agent job 1. Enter "npm" in the task search and select npm.

2. Give the task a Display name. Change the Command option to custom and enter the following command
in Command and arguments. Leave the remaining default options.

Add command line taskAdd command line task

install -g azure-streamanalytics-cicd

azure-streamanalytics-cicd build -scriptPath $(Build.SourcesDirectory)/myASAProject/myASAProj.asaql

1. On the Tasks page, select the plus sign next to Agent job 1. Search for Command line.

2. Give the task a Display name and enter the following script. Modify the script with your repository name
and project name.

Add copy files taskAdd copy files task

PARAMETER INPUT

Display name Copy Files to: $(build.artifactstagingdirectory)

Source Folder $(system.defaultworkingdirectory)

Contents **\Deploy**

Target Folder $(build.artifactstagingdirectory)

1. On the Tasks page, select the plus sign next to Agent job 1. Search for Copy files. Then enter the
following configurations.

Add Publish build artifacts taskAdd Publish build artifacts task

Save and runSave and run

Release with Azure Pipelines

1. On the Tasks page, select the plus sign next to Agent job 1. Search for Publish build artifacts and select
the option with the black arrow icon.

2. Do not change any of the default configurations.

Once you have finished adding the npm, command line, copy files, and publish build artifacts tasks, select Save &
queue. When you are prompted, enter a save comment and select Save and run.

Open a web browser and navigate to your Azure Stream Analytics Visual Studio Code project.

1. Under Pipelines in the left navigation menu, select Releases. Then select New pipeline.

2. Select start with an Empty job.

3. In the Artifacts box, select + Add an artifact. Under Source, select the build pipeline you just created and

Add tasksAdd tasks

select Add.

4. Change the name of Stage 1 to Deploy job to test environment.

5. Add a new stage and name it Deploy job to production environment.

SETTING VALUE

Display name Deploy myASAJob

Azure subscription Choose your subscription.

Action Create or update resource group

1. From the tasks dropdown, select Deploy job to test environment.

2. Select the + next to Agent job and search for Azure resource group deployment. Enter the following
parameters:

Create releaseCreate release

Resource group Choose a name for the test resource group that will
contain your Stream Analytics job.

Location Choose the location of your test resource group.

Template location Linked artifact

Template $(Build.ArtifactStagingDirectory)\drop\myASAJob.JobTemp
late.json

Template parameters ($(Build.ArtifactStagingDirectory)\drop\myASAJob.JobTem
plate.parameters.json

Override template parameters -Input_IoTHub1_iotHubNamespace $(test_eventhubname)

Deployment mode Incremental

SETTING VALUE

SETTING VALUE

Display name Deploy myASAJob

Azure subscription Choose your subscription.

Action Create or update resource group

Resource group Choose a name for the production resource group that
will contain your Stream Analytics job.

Location Choose the location of your production resource group.

Template location Linked artifact

Template $(Build.ArtifactStagingDirectory)\drop\myASAJob.JobTemp
late.json

Template parameters ($(Build.ArtifactStagingDirectory)\drop\myASAJob.JobTem
plate.parameters.json

Override template parameters -Input_IoTHub1_iotHubNamespace $(eventhubname)

Deployment mode Incremental

3. From the tasks dropdown, select Deploy job to production environment.

4. Select the + next to Agent job and search for Azure resource group deployment. Enter the following
parameters:

To create a release, select Create release in the top right corner.

Additional resources

Next steps

To use Managed Identity for Azure Data Lake Store Gen1 as output sink, you need to provide Access to the
service principal using PowerShell before deploying to Azure. Learn more about how to deploy ADLS Gen1 with
Managed Identity with Resource Manager template.

Quickstart: Create an Azure Stream Analytics cloud job in Visual Studio Code (Preview)
Test Stream Analytics queries locally with Visual Studio Code (Preview)
Explore Azure Stream Analytics with Visual Studio Code (Preview)

Explore Azure Stream Analytics with Visual Studio
Code (Preview)
2 minutes to read • Edit Online

Export a job to a local project

List job and view job entities

The Azure Stream Analytics for Visual Studio Code extension gives developers a lightweight experience for
managing their Stream Analytics jobs. It can be used on Windows, Mac and Linux. With the Azure Stream
Analytics extension, you can:

Create, start, and stop jobs
Export existing jobs to a local project
List jobs and view job entities

To export a job to a local project, locate the job you wish to export in the Stream Analytics Explorer in Visual
Studio Code. Then select a folder for your project. The project is exported to the folder you select, and you can
continue to manage the job from Visual Studio Code. For more information on using Visual Studio Code to
manage Stream Analytics jobs, see the Visual Studio Code quickstart.

You can use the job view to interact with Azure Stream Analytics jobs from Visual Studio.

1. Click the Azure icon on Visual Studio Code Activity Bar and then expand Stream Analytics node. Your
jobs should appear under your subscriptions.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/visual-studio-code-explore-jobs.md

Next steps

2. Expand your job node, you can open and view the job query, configuration, inputs, outputs and functions.

3. Right click your job node, and choose the Open Job View in Portal node to open the job view in the
Azure portal.

Create an Azure Stream Analytics cloud job in Visual Studio Code (Preview)

Azure Stream Analytics JobConfig.json fields
2 minutes to read • Edit Online

{
 "DataLocale": "string",
 "OutputErrorPolicy": "string",
 "EventsLateArrivalMaxDelayInSeconds": "integer",
 "EventsOutOfOrderMaxDelayInSeconds": "integer",
 "EventsOutOfOrderPolicy": "string",
 "StreamingUnits": "integer",
 "CompatibilityLevel": "string",
 "UseSystemAssignedIdentity": "boolean",
 "GlobalStorage": {
 "AccountName": "string",
 "AccountKey": "string",
 },
 "DataSourceCredentialDomain": "string",
 "ScriptType": "string",
 "Tags": {}
}

NAME TYPE REQUIRED VALUE

DataLocale string No The data locale of the stream
analytics job. Value should
be the name of a supported.
Defaults to 'en-US' if none
specified.

OutputErrorPolicy string No Indicates the policy to apply
to events that arrive at the
output and cannot be
written to the external
storage due to being
malformed (missing column
values, column values of
wrong type or size). - Stop
or Drop

EventsLateArrivalMaxDelayIn
Seconds

integer No The maximum tolerable
delay in seconds where
events arriving late could be
included. Supported range is
-1 to 1814399 (20.23:59:59
days) and -1 is used to
specify wait indefinitely. If the
property is absent, it is
interpreted to have a value
of -1.

The following fields are supported in the JobConfig.json file used to create an Azure Stream Analytics job using
Visual Studio Code.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/job-config-json.md

EventsOutOfOrderMaxDelay
InSeconds

integer No The maximum tolerable
delay in seconds where out-
of-order events can be
adjusted to be back in order.

EventsOutOfOrderPolicy string No Indicates the policy to apply
to events that arrive out of
order in the input event
stream. - Adjust or Drop

StreamingUnits integer Yes Specifies the number of
streaming units that the
streaming job uses.

CompatibilityLevel string No Controls certain runtime
behaviors of the streaming
job. - Acceptable values are
"1.0", "1.1", "1.2"

UseSystemAssignedIdentity boolean No Set true to enable this job to
communicate with other
Azure services as itself using
a Managed Azure Active
Directory Identity.

GlobalStorage.AccountName string No Global storage account is
used for storing content
related to your stream
analytics job, such as SQL
reference data snapshots.

GlobalStorage.AccountKey string No Corresponding key for global
storage account.

DataSourceCredentialDomai
n

string No Reserved Property for
credential local storage.

ScriptType string Yes Reserved property to
indicated the type of this
source file. Acceptable value
is “JobConfig” for
JobConfig.json.

Tags JSON key-value pairs No Tags are name/value pairs
that enable you to
categorize resources and
view consolidated billing by
applying the same tag to
multiple resources and
resource groups. Tag names
are case-insensitive and tag
values are case-sensitive.

NAME TYPE REQUIRED VALUE

Next steps
Create an Azure Stream Analytics job in Visual Studio Code

Test Stream Analytics queries locally with sample data using Visual Studio Code
Test Stream Analytics queries locally against live stream input by using Visual Studio Code *Deploy an Azure
Stream Analytics job using CI/CD npm package

Troubleshoot input connections
5 minutes to read • Edit Online

Input events not received by job

Malformed input events causes deserialization errors

Could not deserialize the input event(s) from resource <blob URI> as json.

What caused the deserialization errorWhat caused the deserialization error

This page describes common issues with input connections and how to troubleshoot them.

1. Test your connectivity. Verify connectivity to inputs and outputs by using the Test Connection button for
each input and output.

2. Examine your input data.

a. To verify that input data is flowing into Event Hub, use Service Bus Explorer to connect to Azure
Event Hub (if Event Hub input is used).

b. Use the Sample Data button for each input. Download the input sample data.

c. Inspect the sample data to understand the shape of the data--that is, the schema and data types.

3. Ensure that you have selected a time range in the input preview. Choose Select time range, and then enter
a sample duration before testing your query.

Deserialization issues are caused when the input stream of your Stream Analytics job contains malformed
messages. For example, a malformed message could be caused by a missing parenthesis or a brace in a JSON
object, or an incorrect timestamp format in the time field.

When a Stream Analytics job receives a malformed message from an input, it drops the message and notifies you
with a warning. A warning symbol is shown on the Inputs tile of your Stream Analytics job. This warning sign
exists as long as the job is in running state:

Enable the diagnostics logs to view the details of the warning. For malformed input events, the execution logs
contain an entry with the message that looks like:

You can take the following steps to analyze the input events in detail to get a clear understanding of what caused
the deserialization error. You can then fix the event source to generate events in the right format to prevent you
from hitting this issue again.

1. Navigate to the input tile and click on the warning symbols to see the list of issues.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-troubleshoot-input.md
https://code.msdn.microsoft.com/windowsapps/service-bus-explorer-f2abca5a
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-sample-data-input
https://docs.microsoft.com/stream-analytics-query/data-types-azure-stream-analytics

Job exceeds maximum Event Hub Receivers

NOTENOTE

Add a consumer group in Event HubsAdd a consumer group in Event Hubs

2. The input details tile displays a list of warnings with details about each issue. The example warning message
below includes the partition, offset, and sequence numbers where there is malformed JSON data.

3. To find the JSON data with the incorrect format, run the CheckMalformedEvents.cs code available in the
GitHub samples repository. This code reads the partition ID, offset, and prints the data that's located in that
offset.

4. Once you read the data, you can analyze and correct the serialization format.

5. You can also read events from an IoT Hub with the Service Bus Explorer.

A best practice for using Event Hubs is to use multiple consumer groups to ensure job scalability. The number of
readers in the Stream Analytics job for a specific input affects the number of readers in a single consumer group.
The precise number of receivers is based on internal implementation details for the scale-out topology logic and is
not exposed externally. The number of readers can change when a job is started or during job upgrades.

The error shown when the number of receivers exceeds the maximum is:
The streaming job failed: Stream Analytics job has validation errors: Job will exceed the maximum amount of
Event Hub Receivers.

When the number of readers changes during a job upgrade, transient warnings are written to audit logs. Stream Analytics
jobs automatically recover from these transient issues.

To add a new consumer group in your Event Hubs instance, follow these steps:

1. Sign in to the Azure portal.

2. Locate your Event Hubs.

https://github.com/azure/azure-stream-analytics/tree/master/samples/checkmalformedeventseh
https://code.msdn.microsoft.com/how-to-read-events-from-an-1641eb1b

Readers per partition exceeds Event Hubs limit

Split your query into multiple steps by using a WITH clauseSplit your query into multiple steps by using a WITH clause

3. Select Event Hubs under the Entities heading.

4. Select the Event Hub by name.

5. On the Event Hubs Instance page, under the Entities heading, select Consumer groups. A consumer
group with name $Default is listed.

6. Select + Consumer Group to add a new consumer group.

7. When you created the input in the Stream Analytics job to point to the Event Hub, you specified the
consumer group there. $Default is used when none is specified. Once you create a new consumer group,
edit the Event Hub input in the Stream Analytics job and specify the name of the new consumer group.

If your streaming query syntax references the same input Event Hub resource multiple times, the job engine can
use multiple readers per query from that same consumer group. When there are too many references to the same
consumer group, the job can exceed the limit of five and thrown an error. In those circumstances, you can further
divide by using multiple inputs across multiple consumer groups using the solution described in the following
section.

Scenarios in which the number of readers per partition exceeds the Event Hubs limit of five include the following:

Multiple SELECT statements: If you use multiple SELECT statements that refer to same event hub input, each
SELECT statement causes a new receiver to be created.
UNION: When you use a UNION, it's possible to have multiple inputs that refer to the same event hub and
consumer group.
SELF JOIN: When you use a SELF JOIN operation, it's possible to refer to the same event hub multiple times.

The following best practices can help mitigate scenarios in which the number of readers per partition exceeds the
Event Hubs limit of five.

The WITH clause specifies a temporary named result set that can be referenced by a FROM clause in the query.

SELECT foo
INTO output1
FROM inputEventHub

SELECT bar
INTO output2
FROM inputEventHub
…

WITH data AS (
 SELECT * FROM inputEventHub
)

SELECT foo
INTO output1
FROM data

SELECT bar
INTO output2
FROM data
…

Ensure that inputs bind to different consumer groupsEnsure that inputs bind to different consumer groups

Get help

Next steps

You define the WITH clause in the execution scope of a single SELECT statement.

For example, instead of this query:

Use this query:

For queries in which three or more inputs are connected to the same Event Hubs consumer group, create separate
consumer groups. This requires the creation of additional Stream Analytics inputs.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Troubleshoot Azure Stream Analytics outputs
6 minutes to read • Edit Online

Output not produced by job

Job output is delayed
First output is delayedFirst output is delayed

This page describes common issues with output connections and how to troubleshoot and address them.

1. Verify connectivity to outputs by using the Test Connection button for each output.

2. Look at Monitoring Metrics on the Monitor tab. Because the values are aggregated, the metrics are
delayed by a few minutes.

If Input Events > 0, the job is able to read input data. If Input Events is not > 0, then:

To see whether the data source has valid data, check it by using Service Bus Explorer. This check
applies if the job is using Event Hub as input.
Check to see whether the data serialization format and data encoding are as expected.
If the job is using an Event Hub, check to see whether the body of the message is Null.

If Data Conversion Errors > 0 and climbing, the following might be true:

The output event does not conform to the schema of the target sink.
The event schema might not match the defined or expected schema of the events in the query.
The datatypes of some of the fields in the event might not match expectations.

If Runtime Errors > 0, it means that the job can receive the data but is generating errors while
processing the query.

To find the errors, go to the Audit Logs and filter on Failed status.
If InputEvents > 0 and OutputEvents = 0, it means that one of the following is true:

Query processing resulted in zero output events.
Events or its fields might be malformed, resulting in zero output after query processing.
The job was unable to push data to the output sink for connectivity or authentication reasons.

In all the previously mentioned error cases, operations log messages explain additional details
(including what is happening), except in cases where the query logic filtered out all events. If the
processing of multiple events generates errors, Stream Analytics logs the first three error messages
of the same type within 10 minutes to Operations logs. It then suppresses additional identical errors
with a message that reads "Errors are happening too rapidly, these are being suppressed."

When a Stream Analytics job is started, the input events are read, but there can be a delay in the output being
produced in certain circumstances.

Large time values in temporal query elements can contribute to the output delay. To produce correct output over
the large time windows, the streaming job starts up by reading data from the latest time possible (up to seven days
ago) to fill the time window. During that time, no output is produced until the catch-up read of the outstanding
input events is complete. This problem can surface when the system upgrades the streaming jobs, thus restarting
the job. Such upgrades generally occur once every couple of months.

Therefore, use discretion when designing your Stream Analytics query. If you use a large time window (more than

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-troubleshoot-output.md
https://code.msdn.microsoft.com/windowsapps/service-bus-explorer-f2abca5a
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/view-activity-logs

Output falls behindOutput falls behind

Key violation warning with Azure SQL Database output

several hours, up to seven days) for temporal elements in the job's query syntax, it can lead to a delay on the first
output when the job is started or restarted.

One mitigation for this kind of first output delay is to use query parallelization techniques (partitioning the data), or
add more Streaming Units to improve the throughput until the job catches up. For more information, see
Considerations when creating Stream Analytics jobs

These factors impact the timeliness of the first output that is generated:

1. Use of windowed aggregates (GROUP BY of Tumbling, Hopping, and Sliding windows)

For tumbling or hopping window aggregates, results are generated at the end of the window timeframe.
For a sliding window, the results are generated when an event enters or exits the sliding window.
If you are planning to use large window size (> 1 hour), it’s best to choose hopping or sliding window so
that you can see the output more frequently.

2. Use of temporal joins (JOIN with DATEDIFF)

Matches are generated as soon as when both sides of the matched events arrive.
Data that lacks a match (LEFT OUTER JOIN) is generated at the end of the DATEDIFF window with
respect to each event on the left side.

3. Use of temporal analytic functions (ISFIRST, LAST, and LAG with L IMIT DURATION)

For analytic functions, the output is generated for every event, there is no delay.

During normal operation of the job, if you find the job’s output is falling behind (longer and longer latency), you
can pinpoint the root causes by examining these factors:

Whether the downstream sink is throttled
Whether the upstream source is throttled
Whether the processing logic in the query is compute-intensive

To see those details, in the Azure portal, select the streaming job, and select the Job diagram. For each input, there
is a per partition backlog event metric. If the backlog event metric keeps increasing, it’s an indicator that the system
resources are constrained. Potentially that is due to of output sink throttling, or high CPU. For more information on
using the job diagram, see Data-driven debugging by using the job diagram.

When you configure Azure SQL database as output to a Stream Analytics job, it bulk inserts records into the
destination table. In general, Azure stream analytics guarantees at least once delivery to the output sink, one can
still achieve exactly-once delivery to SQL output when SQL table has a unique constraint defined.

Once unique key constraints are set up on the SQL table, and there are duplicate records being inserted into SQL
table, Azure Stream Analytics removes the duplicate record. It splits the data into batches and recursively inserting
the batches until a single duplicate record is found. If the streaming job has a considerable number of duplicate
rows, this split and insert process has to ignore the duplicates one by one, which is less efficient and time-
consuming. If you see multiple key violation warning messages in your Activity log within the past hour, it’s likely
that your SQL output is slowing down the entire job.

To resolve this issue, you should configure the index that is causing the key violation by enabling the
IGNORE_DUP_KEY option. Enabling this option allows duplicate values to be ignored by SQL during bulk inserts
and SQL Azure simply produces a warning message instead of an error. Azure Stream Analytics does not produce
primary key violation errors anymore.

Note the following observations when configuring IGNORE_DUP_KEY for several types of indexes:

https://docs.microsoft.com/stream-analytics-query/event-delivery-guarantees-azure-stream-analytics
https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-delivery-for-sql-output/
https://docs.microsoft.com/sql/t-sql/statements/create-index-transact-sql

Column names are lower-cased by Azure Stream Analytics

Get help

Next steps

You cannot set IGNORE_DUP_KEY on a primary key or a unique constraint that uses ALTER INDEX, you need
to drop and recreate the index.
You can set the IGNORE_DUP_KEY option using ALTER INDEX for a unique index, which is different from
PRIMARY KEY/UNIQUE constraint and created using CREATE INDEX or INDEX definition.
IGNORE_DUP_KEY doesn’t apply to column store indexes because you can’t enforce uniqueness on such
indexes.

When using the original compatibility level (1.0), Azure Stream Analytics used to change column names to lower
case. This behavior was fixed in later compatibility levels. In order to preserve the case, we advise customers to
move to the compatibility level 1.1 and later. You can find more information on Compatibility level for Azure
Stream Analytics jobs.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-compatibility-level
https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Troubleshoot Azure Stream Analytics queries
3 minutes to read • Edit Online

Query is not producing expected output

This article describes common issues with developing Stream Analytics queries and how to troubleshoot them.

1. Examine errors by testing locally:

On Azure portal, on the Query tab, select Test. Use the downloaded sample data to test the query.
Examine any errors and attempt to correct them.
You can also test your query locally using Azure Stream Analytics tools for Visual Studio or Visual Studio
Code.

2. Debug queries step by step locally using job diagram in Azure Stream Analytics tools for Visual Studio. The
job diagram is to show how data flows from input sources (Event Hub, IoT Hub, etc.) through multiple query
steps and finally output to sinks. Each query step is mapped to a temporary result set defined in the script
using WITH statement. You can view the data as well as metrics in each query step in each intermediate
result set to find the source of the issue.

3. If you use Timestamp By, verify that the events have timestamps greater than the job start time.

4. Eliminate common pitfalls, such as:

A WHERE clause in the query filtered out all events, preventing any output from being generated.
A CAST function fails, causing the job to fail. To avoid type cast failures, use TRY_CAST instead.
When you use window functions, wait for the entire window duration to see an output from the query.
The timestamp for events precedes the job start time and, therefore, events are being dropped.

5. Ensure event ordering policies are configured as expected. Go to the Settings and select Event Ordering.
The policy is not applied when you use the Test button to test the query. This result is one difference
between testing in-browser versus running the job in production.

6. Debug by using audit and diagnostic logs:

Use Audit Logs, and filter to identify and debug errors.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-troubleshoot-query.md
https://docs.microsoft.com/stream-analytics-query/timestamp-by-azure-stream-analytics
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/stream-analytics-query/where-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/cast-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/try-cast-azure-stream-analytics
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-out-of-order-and-late-events
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-audit

Job is consuming too many Streaming Units

Debug queries progressively

Use job diagnostic logs to identify and debug errors.

Ensure you take advantage of parallelization in Azure Stream Analytics. You can learn to scale with query
parallelization of Stream Analytics jobs by configuring input partitions and tuning the analytics query definition.

In real-time data processing, knowing what the data looks like in the middle of the query can be helpful. Because
inputs or steps of an Azure Stream Analytics job can be read multiple times, you can write extra SELECT INTO
statements. Doing so outputs intermediate data into storage and lets you inspect the correctness of the data, just as
watch variables do when you debug a program.

The following example query in an Azure Stream Analytics job has one stream input, two reference data inputs,
and an output to Azure Table Storage. The query joins data from the event hub and two reference blobs to get the
name and category information:

Note that the job is running, but no events are being produced in the output. On the Monitoring tile, shown here,
you can see that the input is producing data, but you don’t know which step of the JOIN caused all the events to be
dropped.

In this situation, you can add a few extra SELECT INTO statements to "log" the intermediate JOIN results and the
data that's read from the input.

In this example, we've added two new "temporary outputs." They can be any sink you like. Here we use Azure
Storage as an example:

You can then rewrite the query like this:

Now start the job again, and let it run for a few minutes. Then query temp1 and temp2 with Visual Studio Cloud
Explorer to produce the following tables:

temp1 table

temp2 table

As you can see, temp1 and temp2 both have data, and the name column is populated correctly in temp2. However,
because there is still no data in output, something is wrong:

By sampling the data, you can be almost certain that the issue is with the second JOIN. You can download the
reference data from the blob and take a look:

Get help

Next steps

As you can see, the format of the GUID in this reference data is different from the format of the [from] column in
temp2. That’s why the data didn’t arrive in output1 as expected.

You can fix the data format, upload it to reference blob, and try again:

This time, the data in the output is formatted and populated as expected.

For further assistance, try our Azure Stream Analytics forum.

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Troubleshoot Azure Stream Analytics by using
diagnostics logs
6 minutes to read • Edit Online

Log types

NOTENOTE

NOTENOTE

Debugging using activity logs

Occasionally, an Azure Stream Analytics job unexpectedly stops processing. It's important to be able to
troubleshoot this kind of event. Failures can be caused by an unexpected query result, by connectivity to devices,
or by an unexpected service outage. The diagnostics logs in Stream Analytics can help you identify the cause of
issues when they occur and reduce recovery time.

It is highly recommended to enable diagnostic logs for all jobs as this will greatly help with debugging and
monitoring.

Stream Analytics offers two types of logs:

Activity logs (always on), which give insights into operations performed on jobs.

Diagnostics logs (configurable), which provide richer insights into everything that happens with a job.
Diagnostics logs start when the job is created and end when the job is deleted. They cover events when the
job is updated and while it’s running.

You can use services like Azure Storage, Azure Event Hubs, and Azure Monitor logs to analyze nonconforming data. You are
charged based on the pricing model for those services.

This article was recently updated to use the term Azure Monitor logs instead of Log Analytics. Log data is still stored in a
Log Analytics workspace and is still collected and analyzed by the same Log Analytics service. We are updating the
terminology to better reflect the role of logs in Azure Monitor. See Azure Monitor terminology changes for details.

Activity logs are on by default and give high-level insights into operations performed by your Stream Analytics
job. Information present in activity logs may help find the root cause of the issues impacting your job. Do the
following steps to use activity logs in Stream Analytics:

1. Sign in to the Azure portal and select Activity log under Overview.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-job-diagnostic-logs.md
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-activity-logs
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-of-diagnostic-logs
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-platform-logs
https://docs.microsoft.com/en-us/azure/azure-monitor/azure-monitor-rebrand

Send diagnostics to Azure Monitor logs

2. You can see a list of operations that have been performed. Any operation that caused your job to fail has a
red info bubble.

3. Click an operation to see its summary view. Information here is often limited. To learn more details about
the operation, click JSON .

4. Scroll down to the Properties section of the JSON, which provides details of the error that caused the
failed operation. In this example, the failure was due to a runtime error from out of bound latitude values.
Discrepancy in the data that is processed by a Stream Analytics job causes a data error. You can learn about
different input and output data errors and why they occur.

5. You can take corrective actions based on the error message in JSON. In this example, checks to ensure
latitude value is between -90 degrees and 90 degrees need to be added to the query.

6. If the error message in the Activity logs isn’t helpful in identifying root cause, enable diagnostic logs and
use Azure Monitor logs.

Turning on diagnostic logs and sending them to Azure Monitor logs is highly recommended. Diagnostics logs are
off by default. To turn on diagnostics logs, complete these steps:

1. Sign in to the Azure portal, and navigate to your Stream Analytics job. Under Monitoring, select
Diagnostics logs. Then select Turn on diagnostics.

https://docs.microsoft.com/azure/stream-analytics/data-errors

2. Create a Name in Diagnostic settings and check the box next to Send to Log Analytics. Then add an
existing or create a new Log analytics workspace. Check the boxes for Execution and Authoring under
LOG, and AllMetrics under METRIC. Click Save. It is recommended to use a Log Analytics workspace in
the same Azure region as your Stream Analytics job to prevent additional costs.

3. When your Stream Analytics job starts, diagnostic logs are routed to your Log Analytics workspace. To view
diagnostic logs for your job, select Logs under the Monitoring section.

Diagnostics log categories

Diagnostics logs schema

4. Stream Analytics provides pre-defined queries that allows you to easily search for the logs that you are
interested in. The 3 categories are General, Input data errors and Output data errors. For example, to
see a summary of all the errors of your job in the last 7 days, you can select Run of the appropriate pre-
defined query.

Azure Stream Analytics captures two categories of diagnostics logs:

Authoring: Captures log events that are related to job authoring operations, such as job creation, adding
and deleting inputs and outputs, adding and updating the query, and starting or stopping the job.

Execution: Captures events that occur during job execution.

Connectivity errors
Data processing errors, including:

Other events and errors

Events that don’t conform to the query definition (mismatched field types and values, missing
fields, and so on)
Expression evaluation errors

All logs are stored in JSON format. Each entry has the following common string fields:

NAME DESCRIPTION

time Timestamp (in UTC) of the log.

resourceId ID of the resource that the operation took place on, in upper
case. It includes the subscription ID, the resource group, and
the job name. For example, /SUBSCRIPTIONS/6503D296-
DAC1-4449-9B03-
609A1F4A1C87/RESOURCEGROUPS/MY-RESOURCE-
GROUP/PROVIDERS/MICROSOFT.STREAMANALYTICS/ST
REAMINGJOBS/MYSTREAMINGJOB.

category Log category, either Execution or Authoring.

operationName Name of the operation that is logged. For example, Send
Events: SQL Output write failure to mysqloutput.

status Status of the operation. For example, Failed or Succeeded.

level Log level. For example, Error, Warning, or Informational.

properties Log entry-specific detail, serialized as a JSON string. For more
information, see the following sections in this article.

Execution log properties schemaExecution log properties schema

Data errorsData errors

NAME DESCRIPTION

Source Name of the job input or output where the error occurred.

Message Message associated with the error.

Type Type of error. For example, DataConversionError,
CsvParserError, or
ServiceBusPropertyColumnMissingError.

Data Contains data that is useful to accurately locate the source of
the error. Subject to truncation, depending on size.

Execution logs have information about events that happened during Stream Analytics job execution. The schema
of properties varies depending on whether the event is a data error or a generic event.

Any error that occurs while the job is processing data is in this category of logs. These logs most often are created
during data read, serialization, and write operations. These logs do not include connectivity errors. Connectivity
errors are treated as generic events. You can learn more about the cause of various different input and output data
errors.

Depending on the operationName value, data errors have the following schema:

Serialize events occur during event read operations. They occur when the data at the input does not
satisfy the query schema for one of these reasons:

Type mismatch during event (de)serialize: Identifies the field that's causing the error.

Cannot read an event, invalid serialization: Lists information about the location in the input data
where the error occurred. Includes blob name for blob input, offset, and a sample of the data.

https://docs.microsoft.com/azure/stream-analytics/data-errors

Generic eventsGeneric events

NAME DESCRIPTION

Error (optional) Error information. Usually, this is exception
information if it's available.

Message Log message.

Type Type of message. Maps to internal categorization of errors.
For example, JobValidationError or
BlobOutputAdapterInitializationFailure.

Correlation ID GUID that uniquely identifies the job execution. All execution
log entries from the time the job starts until the job stops
have the same Correlation ID value.

Next steps

Send events occur during write operations. They identify the streaming event that caused the error.

Generic events cover everything else.

Introduction to Stream Analytics
Get started with Stream Analytics
Scale Stream Analytics jobs
Stream Analytics query language reference
Stream Analytics data errors

https://en.wikipedia.org/wiki/universally_unique_identifier
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://docs.microsoft.com/azure/stream-analytics/data-errors

Azure Stream Analytics data errors
6 minutes to read • Edit Online

Diagnostic log schema

{
 "Source": "InputTelemetryData",
 "Type": "DataError",
 "DataErrorType": "InputDeserializerError.InvalidData",
 "BriefMessage": "Json input stream should either be an array of objects or line separated objects. Found
token type: Integer",
 "Message": "Input Message Id: https:\\/\\/exampleBlob.blob.core.windows.net\\/inputfolder\\/csv.txt Error:
Json input stream should either be an array of objects or line separated objects. Found token type: Integer",
 "ExampleEvents": "[\"1,2\\\\u000d\\\\u000a3,4\\\\u000d\\\\u000a5,6\"]",
 "FromTimestamp": "2019-03-22T22:34:18.5664937Z",
 "ToTimestamp": "2019-03-22T22:34:18.5965248Z",
 "EventCount": 1
}

Input data errors
InputDeserializerError.InvalidCompressionTypeInputDeserializerError.InvalidCompressionType

"BriefMessage": "Unable to decompress events from resource
'https:\\/\\/exampleBlob.blob.core.windows.net\\/inputfolder\\/csv.txt'. Please ensure compression setting fits
the data being processed."

InputDeserializerError.InvalidHeaderInputDeserializerError.InvalidHeader

Data errors are errors that occur while processing the data. These errors most often occur during data de-
serialization, serialization, and write operations. When data errors occur, Stream Analytics writes detailed
information and example events to the diagnostic logs. In some cases, summary of this information is also
provided through portal notifications.

This article outlines the different error types, causes, and diagnostic log details for input and output data errors.

See Troubleshoot Azure Stream Analytics by using diagnostics logs to see the schema for diagnostic logs. The
following JSON is an example value for the Properties field of a diagnostic log for a data error.

Cause: The input compression type selected doesn't match the data.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: Messages with any deserialization errors including invalid compression type are dropped from the
input.
Log details

Input message identifier. For Event Hub, the identifier is the PartitionId, Offset, and Sequence Number.

Error message

Cause: The header of input data is invalid. For example, a CSV has columns with duplicate names.
Portal notification provided: Yes
Diagnostic log level: Warning

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/data-errors.md

"BriefMessage": "Invalid CSV Header for resource
'https:\\/\\/exampleBlob.blob.core.windows.net\\/inputfolder\\/csv.txt'. Please make sure there are no
duplicate field names."

InputDeserializerError.MissingColumnsInputDeserializerError.MissingColumns

"BriefMessage": "Could not deserialize the input event(s) from resource
'https:\\/\\/exampleBlob.blob.core.windows.net\\/inputfolder\\/csv.txt' as Csv. Some possible reasons: 1)
Malformed events 2) Input source configured with incorrect serialization format"

"Message": "Missing fields specified in query or in create table. Fields expected:ColumnA Fields found:ColumnB"

InputDeserializerError.TypeConversionErrorInputDeserializerError.TypeConversionError

"BriefMessage": "Could not deserialize the input event(s) from resource
'''https:\\/\\/exampleBlob.blob.core.windows.net\\/inputfolder\\/csv.txt ' as Csv. Some possible reasons: 1)
Malformed events 2) Input source configured with incorrect serialization format"

"Message": "Unable to convert column: dateColumn to expected type."

InputDeserializerError.InvalidDataInputDeserializerError.InvalidData

Impact: Messages with any deserialization errors including invalid header are dropped from the input.
Log details

Input message identifier.
Actual payload up to few kilobytes.

Error message

Cause: The input columns defined with CREATE TABLE or through TIMESTAMP BY doesn't exist.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: Events with missing columns are dropped from the input.
Log details

Input message identifier.
Names of the columns that are missing.
Actual payload up to a few kilobytes.

Error messages

Cause: Unable to convert the input to the type specified in the CREATE TABLE statement.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: Events with type conversion error are dropped from the input.
Log details

Input message identifier.
Name of the column and expected type.

Error messages

Cause: Input data is not in the right format. For example, the input isn't valid JSON.
Portal notification provided: Yes

"BriefMessage": "Json input stream should either be an array of objects or line separated objects. Found token
type: String"

"Message": "Json input stream should either be an array of objects or line separated objects. Found token type:
String"

InvalidInputTimeStampInvalidInputTimeStamp

"BriefMessage": "Unable to get timestamp for resource
'https:\\/\\/exampleBlob.blob.core.windows.net\\/inputfolder\\/csv.txt ' due to error 'Cannot convert string to
datetime'"

InvalidInputTimeStampKeyInvalidInputTimeStampKey

"BriefMessage": "Unable to get value of TIMESTAMP BY OVER COLUMN"

LateInputEventLateInputEvent

Diagnostic log level: Warning
Impact: All events in the message after an invalid data error has been encountered are dropped from the input.
Log details

Input message identifier.
Actual payload up to few kilobytes.

Error messages

Cause: The value of the TIMESTAMP BY expression can't be converted to datetime.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: Events with invalid input timestamp are dropped from the input.
Log details

Input message identifier.
Error message.
Actual payload up to few kilobytes.

Error message

Cause: The value of TIMESTAMP BY OVER timestampColumn is NULL.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: Events with invalid input timestamp key are dropped from the input.
Log details

The actual payload up to few kilobytes.

Error message

Cause: The difference between application time and arrival time is greater than late arrival tolerance window.
Portal notification provided: No
Diagnostic log level: Information
Impact: Late input events are handled according to the "Handle other events" setting in the Event Ordering
section of the job configuration. For more information see Time Handling Policies.
Log details

https://docs.microsoft.com/stream-analytics-query/time-skew-policies-azure-stream-analytics

"BriefMessage": "Input event with application timestamp '2019-01-01' and arrival time '2019-01-02' was sent
later than configured tolerance."

EarlyInputEventEarlyInputEvent

"BriefMessage": "Input event arrival time '2019-01-01' is earlier than input event application timestamp '2019-
01-02' by more than 5 minutes."

OutOfOrderEventOutOfOrderEvent

"Message": "Out of order event(s) received."

Output data errors
OutputDataConversionError.RequiredColumnMissingOutputDataConversionError.RequiredColumnMissing

Application time and arrival time.
Actual payload up to few kilobytes.

Error message

Cause: The difference between Application time and Arrival time is greater than 5 minutes.
Portal notification provided: No
Diagnostic log level: Information
Impact: Early input events are handled according to the "Handle other events" setting in the Event Ordering
section of the job configuration. For more information see Time Handling Policies.
Log details

Application time and arrival time.
Actual payload up to few kilobytes.

Error message

Cause: Event is considered out of order according to the out of order tolerance window defined.
Portal notification provided: No
Diagnostic log level: Information
Impact: Out of order events are handled according to the "Handle other events" setting in the Event Ordering
section of the job configuration. For more information see Time Handling Policies.
Log details

Actual payload up to few kilobytes.

Error message

Cause: The column required for the output doesn't exist. For example, a column defined as Azure Table
PartitionKey does't exist.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: All output data conversion errors including missing required column are handled according to the
Output Data Policy setting.
Log details

Name of the column and either the record identifier or part of the record.

Error message

https://docs.microsoft.com/stream-analytics-query/time-skew-policies-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/time-skew-policies-azure-stream-analytics
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-output-error-policy

"Message": "The output record does not contain primary key property: [deviceId] Ensure the query output
contains the column [deviceId] with a unique non-empty string less than '255' characters."

OutputDataConversionError.ColumnNameInvalidOutputDataConversionError.ColumnNameInvalid

"Message": "Invalid property name #deviceIdValue. Please refer MSDN for Azure table property naming
convention."

OutputDataConversionError.TypeConversionErrorOutputDataConversionError.TypeConversionError

"Message": "The column [id] value null or its type is invalid. Ensure to provide a unique non-empty string less
than '255' characters."

OutputDataConversionError.RecordExceededSizeLimitOutputDataConversionError.RecordExceededSizeLimit

"BriefMessage": "Single output event exceeds the maximum message size limit allowed (262144 bytes) by Event
Hub."

Cause: The column value doesn't conform with the output. For example, the column name isn't a valid Azure
table column.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: All output data conversion errors including invalid column name are handled according to the Output
Data Policy setting.
Log details

Name of the column and either record identifier or part of the record.

Error message

Cause: A column can't be converted to a valid type in the output. For example, the value of column is
incompatible with constraints or type defined in SQL table.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: All output data conversion errors including type conversion error are handled according to the Output
Data Policy setting.
Log details

Name of the column.
Either record identifier or part of the record.

Error message

Cause: The value of the message is greater than the supported output size. For example, a record is larger than
1 MB for an Event Hub output.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: All output data conversion errors including record exceeded size limit are handled according to the
Output Data Policy setting.
Log details

Either record identifier or part of the record.

Error message

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-output-error-policy
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-output-error-policy
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-output-error-policy

OutputDataConversionError.DuplicateKeyOutputDataConversionError.DuplicateKey

"BriefMessage": "Column 'devicePartitionKey' is being mapped to multiple columns."

Next steps

Cause: A record already contains a column with the same name as a System column. For example, CosmosDB
output with a column named ID when ID column is to a different column.
Portal notification provided: Yes
Diagnostic log level: Warning
Impact: All output data conversion errors including duplicate key are handled according to the Output Data
Policy setting.
Log details

Name of the column.
Either record identifier or part of the record.

Troubleshoot Azure Stream Analytics by using diagnostics logs

Understand Stream Analytics job monitoring and how to monitor queries

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-output-error-policy

Perform sentiment analysis with Azure Stream
Analytics and Azure Machine Learning Studio
(classic)
8 minutes to read • Edit Online

TIPTIP

This article describes how to quickly set up a simple Azure Stream Analytics job that integrates Azure Machine
Learning Studio (classic). You use a Machine Learning sentiment analytics model from the Cortana Intelligence
Gallery to analyze streaming text data and determine the sentiment score in real time. Using the Cortana
Intelligence Suite lets you accomplish this task without worrying about the intricacies of building a sentiment
analytics model.

It is highly recommended to use Azure Machine Learning UDFs instead of Azure Machine Learning Studio (classic) UDF for
improved performance and reliability.

You can apply what you learn from this article to scenarios such as these:

Analyzing real-time sentiment on streaming Twitter data.
Analyzing records of customer chats with support staff.
Evaluating comments on forums, blogs, and videos.
Many other real-time, predictive scoring scenarios.

In a real-world scenario, you would get the data directly from a Twitter data stream. To simplify the tutorial, it's
written so that the Streaming Analytics job gets tweets from a CSV file in Azure Blob storage. You can create your
own CSV file, or you can use a sample CSV file, as shown in the following image:

The Streaming Analytics job that you create applies the sentiment analytics model as a user-defined function
(UDF) on the sample text data from the blob store. The output (the result of the sentiment analysis) is written to
the same blob store in a different CSV file.

The following figure demonstrates this configuration. As noted, for a more realistic scenario, you can replace blob
storage with streaming Twitter data from an Azure Event Hubs input. Additionally, you could build a Microsoft
Power BI real-time visualization of the aggregate sentiment.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-machine-learning-integration-tutorial.md
https://powerbi.microsoft.com/

Prerequisites

Create a storage container and upload the CSV input file

Before you start, make sure you have the following:

An active Azure subscription.
A CSV file with some data in it. You can download the file shown earlier from GitHub, or you can create your
own file. For this article, it is assumed that you're using the file from GitHub.

At a high level, to complete the tasks demonstrated in this article, you do the following:

1. Create an Azure storage account and a blob storage container, and upload a CSV-formatted input file to the
container.

2. Add a sentiment analytics model from the Cortana Intelligence Gallery to your Azure Machine Learning Studio
(classic) workspace and deploy this model as a web service in the Machine Learning workspace.

3. Create a Stream Analytics job that calls this web service as a function in order to determine sentiment for the
text input.

4. Start the Stream Analytics job and check the output.

For this step, you can use any CSV file, such as the one available from GitHub.

1. In the Azure portal, click Create a resource > Storage > Storage account.

2. Provide a name (samldemo in the example). The name can use only lowercase letters and numbers, and it
must be unique across Azure.

3. Specify an existing resource group and specify a location. For location, we recommend that all the resources
created in this tutorial use the same location.

https://github.com/azure/azure-stream-analytics/blob/master/sample data/sampleinput.csv

4. In the Azure portal, select the storage account. In the storage account blade, click Containers and then click
+ Container to create blob storage.

5. Provide a name for the container (azuresamldemoblob in the example) and verify that Access type is set to
Blob. When you're done, click OK.

6. In the Containers blade, select the new container, which opens the blade for that container.

7. Click Upload.

8. In the Upload blob blade, upload the sampleinput.csv file that you downloaded earlier. For Blob type,
select Block blob and set the block size to 4 MB, which is sufficient for this tutorial.

9. Click the Upload button at the bottom of the blade.

Add the sentiment analytics model from the Cortana Intelligence
Gallery
Now that the sample data is in a blob, you can enable the sentiment analysis model in Cortana Intelligence
Gallery.

1. Go to the predictive sentiment analytics model page in the Cortana Intelligence Gallery.

2. Click Open in Studio.

3. Sign in to go to the workspace. Select a location.

4. Click Run at the bottom of the page. The process runs, which takes about a minute.

5. After the process has run successfully, select Deploy Web Service at the bottom of the page.

6. To validate that the sentiment analytics model is ready to use, click the Test button. Provide text input such
as "I love Microsoft".

https://gallery.cortanaintelligence.com/experiment/predictive-mini-twitter-sentiment-analysis-experiment-1

Create a Stream Analytics job that uses the Machine Learning model

Create the jobCreate the job

If the test works, you see a result similar to the following example:

7. In the Apps column, click the Excel 2010 or earlier workbook link to download an Excel workbook. The
workbook contains the API key and the URL that you need later to set up the Stream Analytics job.

You can now create a Stream Analytics job that reads the sample tweets from the CSV file in blob storage.

1. Go to the Azure portal.

2. Click Create a resource > Internet of Things > Stream Analytics job.

3. Name the job azure-sa-ml-demo , specify a subscription, specify an existing resource group or create a new
one, and select the location for the job.

https://portal.azure.com

Configure the job inputConfigure the job input
The job gets its input from the CSV file that you uploaded earlier to blob storage.

FIELD VALUE

Input alias Use the name datainput and select Select blob
storage from your subscription

Storage account Select the storage account you created earlier.

Container Select the container you created earlier (
azuresamldemoblob)

Event serialization format Select CSV

1. After the job has been created, under Job Topology in the job blade, click the Inputs option.

2. In the Inputs blade, click Add Stream Input >Blob storage

3. Fill out the Blob Storage blade with these values:

Configure the job outputConfigure the job output

4. Click Save.

The job sends results to the same blob storage where it gets input.

FIELD VALUE

Output alias Use the name datamloutput and select Select blob
storage from your subscription

Storage account Select the storage account you created earlier.

Container Select the container you created earlier (
azuresamldemoblob)

Event serialization format Select CSV

1. Under Job Topology in the job blade, click the Outputs option.

2. In the Outputs blade, click Add >Blob storage, and then add an output with the alias datamloutput .

3. Fill out the Blob Storage blade with these values:

Add the Machine Learning functionAdd the Machine Learning function

4. Click Save.

Earlier you published a Machine Learning model to a web service. In this scenario, when the Stream Analysis job
runs, it sends each sample tweet from the input to the web service for sentiment analysis. The Machine Learning
web service returns a sentiment (positive , neutral , or negative) and a probability of the tweet being positive.

In this section of the tutorial, you define a function in the Stream Analysis job. The function can be invoked to send
a tweet to the web service and get the response back.

FIELD VALUE

Function alias Use the name sentiment and select Provide Azure
Machine Learning function settings manually which
gives you an option to enter the URL and key.

URL Paste the web service URL.

Key Paste the API key.

1. Make sure you have the web service URL and API key that you downloaded earlier in the Excel workbook.

2. Navigate to your job blade > Functions > + Add > AzureML

3. Fill out the Azure Machine Learning function blade with these values:

Create a query to transform the dataCreate a query to transform the data

Start the Stream Analytics job and check the output

Start the jobStart the job

4. Click Save.

Stream Analytics uses a declarative, SQL-based query to examine the input and process it. In this section, you
create a query that reads each tweet from input and then invokes the Machine Learning function to perform
sentiment analysis. The query then sends the result to the output that you defined (blob storage).

WITH sentiment AS (
SELECT text, sentiment1(text) as result
FROM datainput
)

SELECT text, result.[Score]
INTO datamloutput
FROM sentiment

1. Return to the job overview blade.

2. Under Job Topology, click the Query box.

3. Enter the following query:

The query invokes the function you created earlier (sentiment) in order to perform sentiment analysis on
each tweet in the input.

4. Click Save to save the query.

You can now start the Stream Analytics job.

1. Return to the job overview blade.

2. Click Start at the top of the blade.

Check the outputCheck the output

View metricsView metrics

Next steps

3. In the Start job, select Custom, and then select one day prior to when you uploaded the CSV file to blob
storage. When you're done, click Start.

1. Let the job run for a few minutes until you see activity in the Monitoring box.

2. If you have a tool that you normally use to examine the contents of blob storage, use that tool to examine
the azuresamldemoblob container. Alternatively, do the following steps in the Azure portal:

a. In the portal, find the samldemo storage account, and within the account, find the azuresamldemoblob

container. You see two files in the container: the file that contains the sample tweets and a CSV file
generated by the Stream Analytics job.

b. Right-click the generated file and then select Download.

3. Open the generated CSV file. You see something like the following example:

You also can view Azure Machine Learning function-related metrics. The following function-related metrics are
displayed in the Monitoring box in the job blade:

Function Requests indicates the number of requests sent to a Machine Learning web service.
Function Events indicates the number of events in the request. By default, each request to a Machine
Learning web service contains up to 1,000 events.

Introduction to Azure Stream Analytics
Azure Stream Analytics Query Language Reference
Integrate REST API and Machine Learning
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Anomaly detection in Azure Stream Analytics
6 minutes to read • Edit Online

Anomaly detection using machine learning in Azure Stream Analytics

Model behavior

Spike and dip

Available in both the cloud and Azure IoT Edge, Azure Stream Analytics offers built-in machine learning based
anomaly detection capabilities that can be used to monitor the two most commonly occurring anomalies:
temporary and persistent. With the AnomalyDetection_SpikeAndDip and AnomalyDetection_ChangePoint
functions, you can perform anomaly detection directly in your Stream Analytics job.

The machine learning models assume a uniformly sampled time series. If the time series is not uniform, you may
insert an aggregation step with a tumbling window prior to calling anomaly detection.

The machine learning operations do not support seasonality trends or multi-variate correlations at this time.

The following video demonstrates how to detect an anomaly in real time using machine learning functions in
Azure Stream Analytics.

Generally, the model's accuracy improves with more data in the sliding window. The data in the specified sliding
window is treated as part of its normal range of values for that time frame. The model only considers event
history over the sliding window to check if the current event is anomalous. As the sliding window moves, old
values are evicted from the model’s training.

The functions operate by establishing a certain normal based on what they have seen so far. Outliers are identified
by comparing against the established normal, within the confidence level. The window size should be based on the
minimum events required to train the model for normal behavior so that when an anomaly occurs, it would be
able to recognize it.

The model's response time increases with history size because it needs to compare against a higher number of
past events. It is recommended to only include the necessary number of events for better performance.

Gaps in the time series can be a result of the model not receiving events at certain points in time. This situation is
handled by Stream Analytics using imputation logic. The history size, as well as a time duration, for the same
sliding window is used to calculate the average rate at which events are expected to arrive.

An anomaly generator available here can be used to feed an Iot Hub with data with different anomaly patterns. An
ASA job can be set up with these anomaly detection functions to read from this Iot Hub and detect anomalies.

Temporary anomalies in a time series event stream are known as spikes and dips. Spikes and dips can be
monitored using the Machine Learning based operator, AnomalyDetection_SpikeAndDip.

https://github.com/Microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-machine-learning-anomaly-detection.md
https://channel9.msdn.com/shows/internet-of-things-show/real-time-ml-based-anomaly-detection-in-azure-stream-analytics/player?nocookie=true
https://aka.ms/asaanomalygenerator
https://docs.microsoft.com/stream-analytics-query/anomalydetection-spikeanddip-azure-stream-analytics

WITH AnomalyDetectionStep AS
(
 SELECT
 EVENTENQUEUEDUTCTIME AS time,
 CAST(temperature AS float) AS temp,
 AnomalyDetection_SpikeAndDip(CAST(temperature AS float), 95, 120, 'spikesanddips')
 OVER(LIMIT DURATION(second, 120)) AS SpikeAndDipScores
 FROM input
)
SELECT
 time,
 temp,
 CAST(GetRecordPropertyValue(SpikeAndDipScores, 'Score') AS float) AS
 SpikeAndDipScore,
 CAST(GetRecordPropertyValue(SpikeAndDipScores, 'IsAnomaly') AS bigint) AS
 IsSpikeAndDipAnomaly
INTO output
FROM AnomalyDetectionStep

Change point

In the same sliding window, if a second spike is smaller than the first one, the computed score for the smaller spike
is probably not significant enough compared to the score for the first spike within the confidence level specified.
You can try decreasing the model's confidence level to detect such anomalies. However, if you start to get too
many alerts, you can use a higher confidence interval.

The following example query assumes a uniform input rate of one event per second in a 2-minute sliding window
with a history of 120 events. The final SELECT statement extracts and outputs the score and anomaly status with a
confidence level of 95%.

Persistent anomalies in a time series event stream are changes in the distribution of values in the event stream,
like level changes and trends. In Stream Analytics, such anomalies are detected using the Machine Learning based
AnomalyDetection_ChangePoint operator.

Persistent changes last much longer than spikes and dips and could indicate catastrophic event(s). Persistent
changes are not usually visible to the naked eye, but can be detected with the AnomalyDetection_ChangePoint
operator.

The following image is an example of a level change:

https://docs.microsoft.com/stream-analytics-query/anomalydetection-changepoint-azure-stream-analytics

WITH AnomalyDetectionStep AS
(
 SELECT
 EVENTENQUEUEDUTCTIME AS time,
 CAST(temperature AS float) AS temp,
 AnomalyDetection_ChangePoint(CAST(temperature AS float), 80, 1200)
 OVER(LIMIT DURATION(minute, 20)) AS ChangePointScores
 FROM input
)
SELECT
 time,
 temp,
 CAST(GetRecordPropertyValue(ChangePointScores, 'Score') AS float) AS
 ChangePointScore,
 CAST(GetRecordPropertyValue(ChangePointScores, 'IsAnomaly') AS bigint) AS
 IsChangePointAnomaly
INTO output
FROM AnomalyDetectionStep

Performance characteristics

The following image is an example of a trend change:

The following example query assumes a uniform input rate of one event per second in a 20-minute sliding
window with a history size of 1200 events. The final SELECT statement extracts and outputs the score and
anomaly status with a confidence level of 80%.

The performance of these models depends on the history size, window duration, event load, and whether function
level partitioning is used. This section discusses these configurations and provides samples for how to sustain
ingestion rates of 1K, 5K and 10K events per second.

History size - These models perform linearly with history size. The longer the history size, the longer the
models take to score a new event. This is because the models compare the new event with each of the past
events in the history buffer.
Window duration - The Window duration should reflect how long it takes to receive as many events as
specified by the history size. Without that many events in the window, Azure Stream Analytics would impute

RelationshipRelationship

ObservationsObservations

HISTORY SIZE (EVENTS) WINDOW DURATION (MS) TOTAL INPUT EVENTS PER SEC

60 55 2,200

600 728 1,650

6,000 10,910 1,100

HISTORY SIZE (EVENTS) WINDOW DURATION (MS) TOTAL INPUT EVENTS PER SEC DEVICE COUNT

60 1,091 1,100 10

600 10,910 1,100 10

6,000 218,182 <550 10

60 21,819 550 100

600 218,182 550 100

6,000 2,181,819 <550 100

NOTENOTE

Identifying bottlenecksIdentifying bottlenecks

missing values. Hence, CPU consumption is a function of the history size.
Event load - The greater the event load, the more work that is performed by the models, which impacts CPU
consumption. The job can be scaled out by making it embarrassingly parallel, assuming it makes sense for
business logic to use more input partitions.
Function level partitioning - Function level partitioning is done by using PARTITION BY within the
anomaly detection function call. This type of partitioning adds an overhead, as state needs to be maintained for
multiple models at the same time. Function level partitioning is used in scenarios like device level partitioning.

The history size, window duration, and total event load are related in the following way:

windowDuration (in ms) = 1000 * historySize / (Total Input Events Per Sec / Input Partition Count)

When partitioning the function by deviceId, add “PARTITION BY deviceId” to the anomaly detection function call.

The following table includes the throughput observations for a single node (6 SU) for the non-partitioned case:

The following table includes the throughput observations for a single node (6 SU) for the partitioned case:

Sample code to run the non-partitioned configurations above is located in the Streaming At Scale repo of Azure
Samples. The code creates a stream analytics job with no function level partitioning, which uses Event Hub as
input and output. The input load is generated using test clients. Each input event is a 1KB json document. Events
simulate an IoT device sending JSON data (for up to 1K devices). The history size, window duration, and total
event load are varied over 2 input partitions.

For a more accurate estimate, customize the samples to fit your scenario.

Use the Metrics pane in your Azure Stream Analytics job to identify bottlenecks in your pipeline. Review

https://github.com/Azure-Samples/streaming-at-scale/blob/f3e66fa9d8c344df77a222812f89a99b7c27ef22/eventhubs-streamanalytics-eventhubs/anomalydetection/create-solution.sh

Next steps

Input/Output Events for throughput and "Watermark Delay" or Backlogged Events to see if the job is keeping
up with the input rate. For Event Hub metrics, look for Throttled Requests and adjust the Threshold Units
accordingly. For Cosmos DB metrics, review Max consumed RU/s per partition key range under Throughput
to ensure your partition key ranges are uniformly consumed. For Azure SQL DB, monitor Log IO and CPU .

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://azure.microsoft.com/blog/new-metric-in-azure-stream-analytics-tracks-latency-of-your-streaming-pipeline/
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Azure Machine Learning Studio (classic) integration in
Stream Analytics (Preview)
4 minutes to read • Edit Online

Overview: Azure Machine Learning Studio (classic) terminology

Machine Learning resources needed for Stream Analytics jobs

Configure a Stream Analytics and Machine Learning UDF via REST API

Creating a UDF with basic properties

Stream Analytics supports user-defined functions that call out to Azure Machine Learning Studio (classic)
endpoints. REST API support for this feature is detailed in the Stream Analytics REST API library. This article
provides supplemental information needed for successful implementation of this capability in Stream Analytics. A
tutorial has also been posted and is available here.

Microsoft Azure Machine Learning Studio (classic) provides a collaborative, drag-and-drop tool you can use to
build, test, and deploy predictive analytics solutions on your data. This tool is called the Azure Machine Learning
Studio (classic). The studio is used to interact with the Machine Learning resources and easily build, test, and iterate
on your design. These resources and their definitions are below.

Workspace: The workspace is a container that holds all other Machine Learning resources together in a
container for management and control.
Experiment: Experiments are created by data scientists to utilize datasets and train a machine learning model.
Endpoint: Endpoints are the Azure Machine Learning Studio (classic) object used to take features as input,
apply a specified machine learning model and return scored output.
Scoring Webservice: A scoring webservice is a collection of endpoints as mentioned above.

Each endpoint has apis for batch execution and synchronous execution. Stream Analytics uses synchronous
execution. The specific service is named a Request/Response Service in Azure Machine Learning Studio (classic).

For the purposes of Stream Analytics job processing, a Request/Response endpoint, an apikey, and a swagger
definition are all necessary for successful execution. Stream Analytics has an additional endpoint that constructs
the url for swagger endpoint, looks up the interface and returns a default UDF definition to the user.

By using REST APIs you may configure your job to call Azure Machine Language functions. The steps are as
follows:

1. Create a Stream Analytics job
2. Define an input
3. Define an output
4. Create a user-defined function (UDF)
5. Write a Stream Analytics transformation that calls the UDF
6. Start the job

As an example, the following sample code creates a scalar UDF named newudf that binds to an Azure Machine
Learning Studio (classic) endpoint. Note that the endpoint (service URI) can be found on the API help page for the
chosen service and the apiKey can be found on the Services main page.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-how-to-configure-azure-machine-learning-endpoints-in-stream-analytics.md
https://msdn.microsoft.com/library/azure/dn835031.aspx
https://docs.microsoft.com/en-us/azure/machine-learning/studio/consume-web-services
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-connect-to-azure-machine-learning-web-service

 PUT :
/subscriptions/<subscriptionId>/resourceGroups/<resourceGroup>/providers/Microsoft.StreamAnalytics/streamingjo
bs/<streamingjobName>/functions/<udfName>?api-version=<apiVersion>

 {
 "name": "newudf",
 "properties": {
 "type": "Scalar",
 "properties": {
 "binding": {
 "type": "Microsoft.MachineLearning/WebService",
 "properties": {
 "endpoint":
"https://ussouthcentral.services.azureml.net/workspaces/f80d5d7a77fb4b46bf2a30c63c078dca/services/b7be5e40fd19
4258796fb402c1958eaf/execute ",
 "apiKey": "replacekeyhere"
 }
 }
 }
 }
 }

Call RetrieveDefaultDefinition endpoint for default UDF

POST :
/subscriptions/<subscriptionId>/resourceGroups/<resourceGroup>/providers/Microsoft.StreamAnalytics/streamingjo
bs/<streamingjobName>/functions/<udfName>/RetrieveDefaultDefinition?api-version=<apiVersion>

 {
 "bindingType": "Microsoft.MachineLearning/WebService",
 "bindingRetrievalProperties": {
 "executeEndpoint": null,
 "udfType": "Scalar"
 }
 }

Example request body:

Once the skeleton UDF is created the complete definition of the UDF is needed. The RetrieveDefaultDefinition
endpoint helps you get the default definition for a scalar function that is bound to an Azure Machine Learning
Studio (classic) endpoint. The payload below requires you to get the default UDF definition for a scalar function
that is bound to an Azure Machine Learning endpoint. It doesn’t specify the actual endpoint as it has already been
provided during PUT request. Stream Analytics calls the endpoint provided in the request if it is provided explicitly.
Otherwise it uses the one originally referenced. Here the UDF takes a single string parameter (a sentence) and
returns a single output of type string which indicates the "sentiment" label for that sentence.

Example request body:

A sample output of this would look something like below.

 {
 "name": "newudf",
 "properties": {
 "type": "Scalar",
 "properties": {
 "inputs": [{
 "dataType": "nvarchar(max)",
 "isConfigurationParameter": null
 }],
 "output": {
 "dataType": "nvarchar(max)"
 },
 "binding": {
 "type": "Microsoft.MachineLearning/WebService",
 "properties": {
 "endpoint":
"https://ussouthcentral.services.azureml.net/workspaces/f80d5d7a77ga4a4bbf2a30c63c078dca/services/b7be5e40fd19
4258896fb602c1858eaf/execute",
 "apiKey": null,
 "inputs": {
 "name": "input1",
 "columnNames": [{
 "name": "tweet",
 "dataType": "string",
 "mapTo": 0
 }]
 },
 "outputs": [{
 "name": "Sentiment",
 "dataType": "string"
 }],
 "batchSize": 10
 }
 }
 }
 }
 }

Patch UDF with the response

PATCH :
/subscriptions/<subscriptionId>/resourceGroups/<resourceGroup>/providers/Microsoft.StreamAnalytics/streamingjo
bs/<streamingjobName>/functions/<udfName>?api-version=<apiVersion>

Now the UDF must be patched with the previous response, as shown below.

Request Body (Output from RetrieveDefaultDefinition):

 {
 "name": "newudf",
 "properties": {
 "type": "Scalar",
 "properties": {
 "inputs": [{
 "dataType": "nvarchar(max)",
 "isConfigurationParameter": null
 }],
 "output": {
 "dataType": "nvarchar(max)"
 },
 "binding": {
 "type": "Microsoft.MachineLearning/WebService",
 "properties": {
 "endpoint":
"https://ussouthcentral.services.azureml.net/workspaces/f80d5d7a77ga4a4bbf2a30c63c078dca/services/b7be5e40fd19
4258896fb602c1858eaf/execute",
 "apiKey": null,
 "inputs": {
 "name": "input1",
 "columnNames": [{
 "name": "tweet",
 "dataType": "string",
 "mapTo": 0
 }]
 },
 "outputs": [{
 "name": "Sentiment",
 "dataType": "string"
 }],
 "batchSize": 10
 }
 }
 }
 }
 }

Implement Stream Analytics transformation to call the UDF

 {
 "name": "transformation",
 "properties": {
 "streamingUnits": null,
 "query": "select *,scoreTweet(Tweet) TweetSentiment into blobOutput from blobInput"
 }
 }

Get help

Next steps

Now query the UDF (here named scoreTweet) for every input event and write a response for that event to an
output.

For further assistance, try our Azure Stream Analytics forum

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Data-driven debugging by using the job diagram
3 minutes to read • Edit Online

Using the job diagram

The job diagram on the Monitoring blade in the Azure portal can help you visualize your job pipeline. It shows
inputs, outputs, and query steps. You can use the job diagram to examine the metrics for each step, to more quickly
isolate the source of a problem when you troubleshoot issues.

In the Azure portal, while in a Stream Analytics job, under SUPPORT + TROUBLESHOOTING, select Job
diagram:

Select each query step to see the corresponding section in a query editing pane. A metric chart for the step is
displayed in a lower pane on the page.

To see the partitions of the Azure Event Hubs input, select . . . A context menu appears. You also can see the input
merger.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-job-diagram-with-metrics.md

To see the metric chart for only a single partition, select the partition node. The metrics are shown at the bottom of
the page.

To see the metrics chart for a merger, select the merger node. The following chart shows that no events were
dropped or adjusted.

To see the details of the metric value and time, point to the chart.

Troubleshoot by using metrics

How much data is being read?How much data is being read?

Is time moving forward? If actual events are read, punctuation might not be issued.Is time moving forward? If actual events are read, punctuation might not be issued.

Are there any errors in the input?Are there any errors in the input?

Are events being dropped or adjusted?Are events being dropped or adjusted?

Are we falling behind in reading data?Are we falling behind in reading data?

The QueryLastProcessedTime metric indicates when a specific step received data. By looking at the topology,
you can work backward from the output processor to see which step is not receiving data. If a step is not getting
data, go to the query step just before it. Check whether the preceding query step has a time window, and if enough
time has passed for it to output data. (Note that time windows are snapped to the hour.)

If the preceding query step is an input processor, use the input metrics to help answer the following targeted
questions. They can help you determine whether a job is getting data from its input sources. If the query is
partitioned, examine each partition.

InputEventsSourcesTotal is the number of data units read. For example, the number of blobs.
InputEventsTotal is the number of events read. This metric is available per partition.
InputEventsInBytesTotal is the number of bytes read.
InputEventsLastArrivalTime is updated with every received event's enqueued time.

InputEventsLastPunctuationTime indicates when a punctuation was issued to keep time moving forward. If
punctuation is not issued, data flow can get blocked.

InputEventsEventDataNullTotal is a count of events that have null data.
InputEventsSerializerErrorsTotal is a count of events that could not be deserialized correctly.
InputEventsDegradedTotal is a count of events that had an issue other than with deserialization.

InputEventsEarlyTotal is the number of events that have an application timestamp before the high
watermark.
InputEventsLateTotal is the number of events that have an application timestamp after the high watermark.
InputEventsDroppedBeforeApplicationStartTimeTotal is the number events dropped before the job start
time.

Input Events Backlogged (Total) tells you how many more messages need to be read for Event Hubs and
Azure IoT Hub inputs. When this number is greater than 0, it means your job can't process the data as fast as it
is coming in. In this case you may need to increase the number of Streaming Units and/or make sure your job
can be parallelized. You can see more info on this on the query parallelization page.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization

Get help

Next steps

For additional assistance, try our Azure Stream Analytics forum.

Introduction to Stream Analytics
Get started with Stream Analytics
Scale Stream Analytics jobs
Stream Analytics query language reference
Stream Analytics management REST API reference

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics
https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Scale your Stream Analytics job with Azure Machine
Learning Studio (classic) functions
7 minutes to read • Edit Online

TIPTIP

What is an Azure Machine Learning function in Stream Analytics?

Configure a Stream Analytics job with Machine Learning functions

It is highly recommended to use Azure Machine Learning UDFs instead of Azure Machine Learning Studio (classic) UDF for
improved performance and reliability.

This article discusses how to efficiently scale Azure Stream Analytics jobs that use Azure Machine Learning
functions. For information on how to scale Stream Analytics jobs in general see the article Scaling jobs.

A Machine Learning function in Stream Analytics can be used like a regular function call in the Stream Analytics
query language. Behind the scenes, however, these function calls are actually Azure Machine Learning Web Service
requests.

You can improve the throughput of Machine Learning web service requests by "batching" multiple rows together
in the same web service API call. This grouping is called a mini-batch. For more information, see Azure Machine
Learning Studio (classic) Web Services. Support for Azure Machine Learning Studio (classic) in Stream Analytics is
in preview.

There are two parameters to configure the Machine Learning function used by your Stream Analytics job:

Batch size of the Machine Learning function calls.
The number of Streaming Units (SUs) provisioned for the Stream Analytics job.

To determine the appropriate values for SUs, decide whether you would like to optimize latency of the Stream
Analytics job or the throughput of each SU. SUs may always be added to a job to increase the throughput of a
well-partitioned Stream Analytics query. Additional SUs do increase the cost of running the job.

Determine the latency tolerance for your Stream Analytics job. Increasing the batch size will increase the latency of
your Azure Machine Learning requests and the latency of the Stream Analytics job.

Increasing the batch size allows the Stream Analytics job to process more events with the same number of
Machine Learning web service requests. The increase of Machine Learning web service latency is usually sublinear
to the increase of batch size.

It's important to consider the most cost-efficient batch size for a Machine Learning web service in any given
situation. The default batch size for web service requests is 1000. You can change this default size using the Stream
Analytics REST API or the PowerShell client for Stream Analytics.

Once you've decided on a batch size, you can set the number of streaming units (SUs), based on the number of
events that the function needs to process per second. For more information about streaming units, see Stream
Analytics scale jobs.

Every 6 SUs get 20 concurrent connections to the Machine Learning web service. However, 1 SU job and 3 SU
jobs get 20 concurrent connections.

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-scale-with-machine-learning-functions.md
https://docs.microsoft.com/en-us/azure/machine-learning/studio/consume-web-services
https://docs.microsoft.com/previous-versions/azure/mt653706(v=azure.100)

Example – Sentiment Analysis

 WITH subquery AS (
 SELECT text, sentiment(text) as result from input
)

 Select text, result.[Score]
 Into output
 From subquery

If your application generates 200,000 events per second, and the batch size is 1000, then the resulting web service
latency is 200 ms. This rate means that every connection can make five requests to the Machine Learning web
service each second. With 20 connections, the Stream Analytics job can process 20,000 events in 200 ms and
100,000 events in a second.

To process 200,000 events per second, the Stream Analytics job needs 40 concurrent connections, which come out
to 12 SUs. The following diagram illustrates the requests from the Stream Analytics job to the Machine Learning
web service endpoint – Every 6 SUs has 20 concurrent connections to Machine Learning web service at max.

In general, B for batch size, L for the web service latency at batch size B in milliseconds, the throughput of a
Stream Analytics job with N SUs is:

You can also configure the 'max concurrent calls' on the Machine Learning web service. It's recommended to set
this parameter to the maximum value (200 currently).

For more information on this setting, review the Scaling article for Machine Learning Web Services.

The following example includes a Stream Analytics job with the sentiment analysis Machine Learning function, as
described in the Stream Analytics Machine Learning integration tutorial.

The query is a simple fully partitioned query followed by the sentiment function, as shown in the following
example:

Let's examine the configuration necessary to create a Stream Analytics job, which does sentiment analysis of
tweets at a rate of 10,000 tweets per second.

Using 1 SU, could this Stream Analytics job handle the traffic? The job can keep up with the input using the default
batch size of 1000. The default latency of the sentiment analysis Machine Learning web service (with a default
batch size of 1000) creates no more than a second of latency.

The Stream Analytics job's overall or end-to-end latency would typically be a few seconds. Take a more detailed
look into this Stream Analytics job, especially the Machine Learning function calls. With a batch size of 1000, a
throughput of 10,000 events takes about 10 requests to the web service. Even with one SU, there are enough
concurrent connections to accommodate this input traffic.

If the input event rate increases by 100x, then the Stream Analytics job needs to process 1,000,000 tweets per

https://docs.microsoft.com/en-us/azure/machine-learning/studio/scaling-webservice

LATENCY BATCH SIZE

200 ms 1000-event batches or below

250 ms 5,000-event batches

300 ms 10,000-event batches

500 ms 25,000-event batches

BATCH SIZE (ML
LATENCY) 500 (200 MS) 1,000 (200 MS) 5,000 (250 MS) 10,000 (300 MS) 25,000 (500 MS)

1 SU 2,500 5,000 20,000 30,000 50,000

3 SUs 2,500 5,000 20,000 30,000 50,000

6 SUs 2,500 5,000 20,000 30,000 50,000

12 SUs 5,000 10,000 40,000 60,000 100,000

18 SUs 7,500 15,000 60,000 90,000 150,000

24 SUs 10,000 20,000 80,000 120,000 200,000

… … … … … …

second. There are two options to accomplish the increased scale:

1. Increase the batch size.
2. Partition the input stream to process the events in parallel.

With the first option, the job latency increases.

With the second option, you will have to provision more SUs to have more concurrent Machine Learning web
service requests. This greater number of SUs, increases the job cost.

Let's look at the scaling using the following latency measurements for each batch size:

1. Using the first option (not provisioning more SUs). The batch size could be increased to 25,000. Increasing the
batch size in this way will allow the job to process 1,000,000 events with 20 concurrent connections to the
Machine Learning web service (with a latency of 500 ms per call). So the additional latency of the Stream
Analytics job due to the sentiment function requests against the Machine Learning web service requests would
be increased from 200 ms to 500 ms. However, batch size can't be increased infinitely as the Machine
Learning web services requires the payload size of a request be 4 MB or smaller, and web service requests
timeout after 100 seconds of operation.

2. Using the second option, the batch size is left at 1000, with 200-ms web service latency, every 20 concurrent
connections to the web service would be able to process 1000 * 20 * 5 events = 100,000 per second. So to
process 1,000,000 events per second, the job would need 60 SUs. Compared to the first option, Stream
Analytics job would make more web service batch requests, in turn generating an increased cost.

Below is a table for the throughput of the Stream Analytics job for different SUs and batch sizes (in number of
events per second).

60 SUs 25,000 50,000 200,000 300,000 500,000

BATCH SIZE (ML
LATENCY) 500 (200 MS) 1,000 (200 MS) 5,000 (250 MS) 10,000 (300 MS) 25,000 (500 MS)

New function-related monitoring metrics

Key Takeaways

Next steps

By now, you should already have a good understanding of how Machine Learning functions in Stream Analytics
work. You likely also understand that Stream Analytics jobs "pull" data from data sources and each "pull" returns a
batch of events for the Stream Analytics job to process. How does this pull model impact the Machine Learning
web service requests?

Normally, the batch size we set for Machine Learning functions won't exactly be divisible by the number of events
returned by each Stream Analytics job "pull". When this occurs, the Machine Learning web service is called with
"partial" batches. Using partial batches avoids incurring additional job latency overhead in coalescing events from
pull to pull.

In the Monitor area of a Stream Analytics job, three additional function-related metrics have been added. They are
FUNCTION REQUESTS, FUNCTION EVENTS and FAILED FUNCTION REQUESTS, as shown in the
graphic below.

The are defined as follows:

FUNCTION REQUESTS: The number of function requests.

FUNCTION EVENTS: The number events in the function requests.

FAILED FUNCTION REQUESTS: The number of failed function requests.

To scale a Stream Analytics job with Machine Learning functions, consider the following factors:

1. The input event rate.
2. The tolerated latency for the running Stream Analytics job (and thus the batch size of the Machine Learning

web service requests).
3. The provisioned Stream Analytics SUs and the number of Machine Learning web service requests (the

additional function-related costs).

A fully partitioned Stream Analytics query was used as an example. If a more complex query is needed, the Azure
Stream Analytics forum is a great resource for getting additional help from the Stream Analytics team.

To learn more about Stream Analytics, see:

https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

Parse JSON and Avro data in Azure Stream Analytics
5 minutes to read • Edit Online

NOTENOTE

Record data types

{
 "DeviceId" : "12345",
 "Location" :
 {
 "Lat": 47,
 "Long": 122
 },
 "SensorReadings" :
 {
 "Temperature" : 80,
 "Humidity" : 70,
 "CustomSensor01" : 5,
 "CustomSensor02" : 99,
 "SensorMetadata" :
 {
 "Manufacturer":"ABC",
 "Version":"1.2.45"
 }
 }
}

Access nested fields in known schemaAccess nested fields in known schema

SELECT
 DeviceID,
 Location.Lat,
 Location.Long,
 SensorReadings.Temperature,
 SensorReadings.SensorMetadata.Version
FROM input

Azure Stream Analytics support processing events in CSV, JSON, and Avro data formats. Both JSON and Avro
data can be structured and contain some complex types such as nested objects (records) and arrays.

AVRO files created by Event Hub Capture use a specific format that requires you to use the custom deserializer feature. For
more information, see Read input in any format using .NET custom deserializers.

Record data types are used to represent JSON and Avro arrays when corresponding formats are used in the input
data streams. These examples demonstrate a sample sensor, which is reading input events in JSON format. Here
is example of a single event:

Use dot notation (.) to easily access nested fields directly from your query. For example, this query selects the
Latitude and Longitude coordinates under the Location property in the preceding JSON data. The dot notation
can be used to navigate multiple levels as shown below.

The result is:

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-parsing-json.md
https://docs.microsoft.com/azure/stream-analytics/custom-deserializer-examples

DEVICEID LAT LONG TEMPERATURE VERSION

12345 47 122 80 1.2.45

Select all propertiesSelect all properties

SELECT
 DeviceID,
 Location.*
FROM input

DEVICEID LAT LONG

12345 47 122

Access nested fields when property name is a variableAccess nested fields when property name is a variable

{
 "DeviceId" : "12345",
 "SensorName" : "Temperature",
 "Value" : 85
},
{
 "DeviceId" : "12345",
 "SensorName" : "Humidity",
 "Value" : 65
}

SELECT
 input.DeviceID,
 thresholds.SensorName,
 "Alert : Sensor above threshold" AS AlertMessage
FROM input -- stream input
JOIN thresholds -- reference data input
ON
 input.DeviceId = thresholds.DeviceId
WHERE
 GetRecordPropertyValue(input.SensorReadings, thresholds.SensorName) > thresholds.Value

You can select all the properties of a nested record using '*' wildcard. Consider the following example:

The result is:

Use the GetRecordPropertyValue function if the property name is a variable. This allows for building dynamic
queries without hardcoding property names.

For example, imagine the sample data stream needs to be joined with reference data containing thresholds for
each device sensor. A snippet of such reference data is shown below.

The goal here is to join our sample dataset from the top of the article to that reference data, and output one event
for each sensor measure above its threshold. That means our single event above can generate multiple output
events if multiple sensors are above their respective thresholds, thanks to the join. To achieve similar results
without a join, see the section below.

GetRecordPropertyValue selects the property in SensorReadings, which name matches the property name
coming from the reference data. Then the associated value from SensorReadings is extracted.

The result is:

https://docs.microsoft.com/stream-analytics-query/getrecordpropertyvalue-azure-stream-analytics

DEVICEID SENSORNAME ALERTMESSAGE

12345 Humidity Alert : Sensor above threshold

Convert record fields into separate eventsConvert record fields into separate events

SELECT
 event.DeviceID,
 sensorReading.PropertyName,
 sensorReading.PropertyValue
FROM input as event
CROSS APPLY GetRecordProperties(event.SensorReadings) AS sensorReading

DEVICEID SENSORNAME ALERTMESSAGE

12345 Temperature 80

12345 Humidity 70

12345 CustomSensor01 5

12345 CustomSensor02 99

12345 SensorMetadata [object Object]

WITH Stage0 AS
(
 SELECT
 event.DeviceID,
 sensorReading.PropertyName,
 sensorReading.PropertyValue
 FROM input as event
 CROSS APPLY GetRecordProperties(event.SensorReadings) AS sensorReading
)

SELECT DeviceID, PropertyValue AS Temperature INTO TemperatureOutput FROM Stage0 WHERE PropertyName =
'Temperature'
SELECT DeviceID, PropertyValue AS Humidity INTO HumidityOutput FROM Stage0 WHERE PropertyName = 'Humidity'

Parse JSON record in SQL reference dataParse JSON record in SQL reference data

DEVICEID DATA

12345 {"key" : "value1"}

To convert record fields into separate events, use the APPLY operator together with the GetRecordProperties
function.

With the original sample data, the following query could be used to extract properties into different events.

The result is:

Using WITH, it's then possible to route those events to different destinations:

When using Azure SQL Database as reference data in your job, it's possible to have a column that has data in
JSON format. An example is shown below.

https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getrecordproperties-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/with-azure-stream-analytics

54321 {"key" : "value2"}

DEVICEID DATA

function parseJson(string) {
return JSON.parse(string);
}

WITH parseJson as
(
SELECT DeviceID, udf.parseJson(sqlRefInput.Data) as metadata,
FROM sqlRefInput
)

SELECT metadata.key
INTO output
FROM streamInput
JOIN parseJson
ON streamInput.DeviceID = parseJson.DeviceID

Array data types

{
 "DeviceId" : "12345",
 "SensorReadings" :
 {
 "Temperature" : 80,
 "Humidity" : 70,
 "CustomSensor01" : 5,
 "CustomSensor02" : 99,
 "CustomSensor03": [12,-5,0]
 },
 "SensorMetadata":[
 {
 "smKey":"Manufacturer",
 "smValue":"ABC"
 },
 {
 "smKey":"Version",
 "smValue":"1.2.45"
 }
]
}

Working with a specific array elementWorking with a specific array element

You can parse the JSON record in the Data column by writing a simple JavaScript user-defined function.

You can then create a step in your Stream Analytics query as shown below to access the fields of your JSON
records.

Array data types are an ordered collection of values. Some typical operations on array values are detailed below.
These examples use the functions GetArrayElement, GetArrayElements, GetArrayLength, and the APPLY operator.

Here is an example of a single event. Both CustomSensor03 and SensorMetadata are of type array:

Select array element at a specified index (selecting the first array element):

https://docs.microsoft.com/stream-analytics-query/getarrayelement-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarrayelements-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarraylength-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics

SELECT
 GetArrayElement(SensorReadings.CustomSensor03, 0) AS firstElement
FROM input

FIRSTELEMENT

12

Select array lengthSelect array length

SELECT
 GetArrayLength(SensorReadings.CustomSensor03) AS arrayLength
FROM input

ARRAYLENGTH

3

Convert array elements into separate eventsConvert array elements into separate events

SELECT
 DeviceId,
 CustomSensor03Record.ArrayIndex,
 CustomSensor03Record.ArrayValue
FROM input
CROSS APPLY GetArrayElements(SensorReadings.CustomSensor03) AS CustomSensor03Record

DEVICEID ARRAYINDEX ARRAYVALUE

12345 0 12

12345 1 -5

12345 2 0

SELECT
 i.DeviceId,
 SensorMetadataRecords.ArrayValue.smKey as smKey,
 SensorMetadataRecords.ArrayValue.smValue as smValue
FROM input i
CROSS APPLY GetArrayElements(SensorMetadata) AS SensorMetadataRecords

The result is:

The result is:

Select all array element as individual events. The APPLY operator together with the GetArrayElements built-in
function extracts all array elements as individual events:

The result is:

The result is:

https://docs.microsoft.com/stream-analytics-query/apply-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/getarrayelements-azure-stream-analytics

DEVICEID SMKEY SMVALUE

12345 Manufacturer ABC

12345 Version 1.2.45

WITH DynamicCTE AS (
 SELECT
 i.DeviceId,
 SensorMetadataRecords.ArrayValue.smKey as smKey,
 SensorMetadataRecords.ArrayValue.smValue as smValue
 FROM input i
 CROSS APPLY GetArrayElements(SensorMetadata) AS SensorMetadataRecords
)

SELECT
 i.DeviceId,
 i.Location.*,
 V.smValue AS 'smVersion',
 M.smValue AS 'smManufacturer'
FROM input i
LEFT JOIN DynamicCTE V ON V.smKey = 'Version' and V.DeviceId = i.DeviceId AND DATEDIFF(minute,i,V) BETWEEN 0
AND 0
LEFT JOIN DynamicCTE M ON M.smKey = 'Manufacturer' and M.DeviceId = i.DeviceId AND DATEDIFF(minute,i,M)
BETWEEN 0 AND 0

DEVICEID LAT LONG SMVERSION SMMANUFACTURER

12345 47 122 1.2.45 ABC

See Also

If the extracted fields need to appear in columns, it is possible to pivot the dataset using the WITH syntax in
addition to the JOIN operation. That join will require a time boundary condition that prevents duplication:

The result is:

Data Types in Azure Stream Analytics

https://docs.microsoft.com/stream-analytics-query/with-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics
https://docs.microsoft.com/stream-analytics-query/join-azure-stream-analytics#bkmk_datediff
https://docs.microsoft.com/stream-analytics-query/data-types-azure-stream-analytics

Azure Stream Analytics preview features
3 minutes to read • Edit Online

Public previews

Online scalingOnline scaling

C# custom de-serializersC# custom de-serializers

Extensibility with C# custom codeExtensibility with C# custom code

Debug query steps in Visual StudioDebug query steps in Visual Studio

Local testing with live data in Visual Studio CodeLocal testing with live data in Visual Studio Code

Visual Studio Code for Azure Stream AnalyticsVisual Studio Code for Azure Stream Analytics

Integration with Azure Machine LearningIntegration with Azure Machine Learning

Live data testing in Visual StudioLive data testing in Visual Studio

.NET user-defined functions on IoT Edge.NET user-defined functions on IoT Edge

This article summarizes all the features currently in preview for Azure Stream Analytics. Using preview features in
a production environment isn't recommended.

The following features are in public preview. You can take advantage of these features today, but don't use them in
your production environment.

With online scaling, you are not required to stop your job if you need to change the SU allocation. You can increase
or decrease the SU capacity of a running job without having to stop it. This builds on the customer promise of
long-running mission-critical pipelines that Stream Analytics offers today. For more information, see Configure
Azure Stream Analytics Streaming Units.

Developers can leverage the power of Azure Stream Analytics to process data in Protobuf, XML, or any custom
format. You can implement custom de-serializers in C#, which can then be used to de-serialize events received by
Azure Stream Analytics.

Developers creating Stream Analytics modules in the cloud or on IoT Edge can write or reuse custom C# functions
and invoke them directly in the query through user-defined functions.

You can easily preview the intermediate row set on a data diagram when doing local testing in Azure Stream
Analytics tools for Visual Studio.

You can test your queries against live data on your local machine before submitting the job to Azure. Each testing
iteration takes less than two to three seconds on average, resulting in a very efficient development process.

Azure Stream Analytics jobs can be authored in Visual Studio Code. See our VS Code getting started tutorial.

You can scale Stream Analytics jobs with Machine Learning (ML) functions. To learn more about how you can use
ML functions in your Stream Analytics job, visit Scale your Stream Analytics job with Azure Machine Learning
functions. Check out a real-world scenario with Performing sentiment analysis by using Azure Stream Analytics
and Azure Machine Learning.

Visual Studio tools for Azure Stream Analytics enhance the local testing feature that allows you to test you queries
against live event streams from cloud sources such as Event Hub or IoT hub. Learn how to Test live data locally
using Azure Stream Analytics tools for Visual Studio.

With .NET standard user-defined functions, you can run .NET Standard code as part of your streaming pipeline.
You can create simple C# classes or import full project and libraries. Full authoring and debugging experience is

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-previews.md
https://docs.microsoft.com/azure/stream-analytics/quick-create-vs-code

Other previews

Real-time high performance scoring with custom ML models managed by Azure Machine LearningReal-time high performance scoring with custom ML models managed by Azure Machine Learning

Support for Azure StackSupport for Azure Stack

supported in Visual Studio. For more information, visit Develop .NET Standard user-defined functions for Azure
Stream Analytics Edge jobs.

The following features are also available in preview on request.

Azure Stream Analytics supports high-performance, real-time scoring by leveraging custom pre-trained Machine
Learning models managed by Azure Machine Learning, and hosted in Azure Kubernetes Service (AKS) or Azure
Container Instances (ACI), using a workflow that does not require you to write code. Sign up for preview

This feature enabled on the Azure IoT Edge runtime, leverages custom Azure Stack features, such as native support
for local inputs and outputs running on Azure Stack (for example Event Hubs, IoT Hub, Blob Storage). This new
integration enables you to build hybrid architectures that can analyze your data close to where it is generated,
lowering latency and maximizing insights. This feature enables you to build hybrid architectures that can analyze
your data close to where it is generated, lowering latency and maximizing insights. You must sign up for this
preview.

https://aka.ms/asapreview1
https://aka.ms/asapreview1

Reference architecture: Real-time event processing
with Microsoft Azure Stream Analytics
2 minutes to read • Edit Online

Summary

Contents

Get help

Next steps

The reference architecture for real-time event processing with Azure Stream Analytics is intended to provide a
generic blueprint for deploying a real-time platform as a service (PaaS) stream-processing solution with Microsoft
Azure.

Traditionally, analytics solutions have been based on capabilities such as ETL (extract, transform, load) and data
warehousing, where data is stored prior to analysis. Changing requirements, including more rapidly arriving data,
are pushing this existing model to the limit. The ability to analyze data within moving streams prior to storage is
one solution, and while it is not a new capability, the approach has not been widely adopted across all industry
verticals.

Microsoft Azure provides an extensive catalog of analytics technologies that are capable of supporting an array of
different solution scenarios and requirements. Selecting which Azure services to deploy for an end-to-end solution
can be a challenge given the breadth of offerings. This paper is designed to describe the capabilities and
interoperation of the various Azure services that support an event-streaming solution. It also explains some of the
scenarios in which customers can benefit from this type of approach.

Executive Summary
Introduction to Real-Time Analytics
Value Proposition of Real-Time Data in Azure
Common Scenarios for Real-Time Analytics
Architecture and Components

Conclusion

Data Sources
Data-Integration Layer
Real-time Analytics Layer
Data Storage Layer
Presentation / Consumption Layer

Author: Charles Feddersen, Solution Architect, Data Insights Center of Excellence, Microsoft Corporation

Published: January 2015

Revision: 1.0

Download: Real-Time Event Processing with Microsoft Azure Stream Analytics

For further assistance, try the Azure Stream Analytics forum

https://github.com/microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-real-time-event-processing-reference-architecture.md
https://download.microsoft.com/download/6/2/3/623924de-b083-4561-9624-c1ab62b5f82b/real-time-event-processing-with-microsoft-azure-stream-analytics.pdf
https://social.msdn.microsoft.com/forums/azure/home?forum=azurestreamanalytics

Introduction to Azure Stream Analytics
Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://docs.microsoft.com/stream-analytics-query/stream-analytics-query-language-reference
https://msdn.microsoft.com/library/azure/dn835031.aspx

	Cover Page
	Stream Analytics Documentation
	Overview
	What is Stream Analytics?
	End-to-end solution patterns

	Quickstarts
	Create a job - Azure portal
	Create a job - PowerShell
	Create a job - Visual Studio
	Create a job - Visual Studio Code

	Tutorials
	1 - Create / manage a job
	2 - Run Azure Functions
	3 - Run a JavaScript UDF
	4 - Deploy with CI/CD in Azure Pipelines
	5 - Run a C# UDF
	6 - Create custom .NET deserializer

	Samples
	Code samples

	Concepts
	Choose a streaming analytics technology
	Choose a job development tool
	Input types for a job
	Inputs overview
	Streaming data inputs
	Reference data inputs
	Read inputs in any format using custom deserializers

	Output types for a job
	Outputs overview
	Output to Cosmos DB
	Output to Azure SQL DB
	Blob custom path patterns

	User-defined functions
	Machine learning UDF
	C# UDF

	Optimize your Stream Analytics job
	Understand and adjust Streaming Units
	Improve query performance
	Repartition your input
	Increase throughput of your job

	States of a job
	Window functions
	Geospatial functions
	Compatibility level
	Common query patterns
	Parse JSON and AVRO data
	Time handling considerations
	Checkpoint and replay
	Error policy

	How-to-guides
	Manage
	Update credentials
	Configure event ordering policies
	Configure alerts
	Start a job
	Test a job
	View results on a dashboard
	Stop or delete a job
	Copy or back up a job
	Pair jobs for reliability
	Authenticate with managed identity - ADLS Gen 1 output
	Use SQL reference data
	Authenticate with managed identity - Blob output
	Authenticate with managed identity - Power BI
	Encrypt your data

	Build solutions
	Twitter sentiment analysis
	Real-time fraud detection
	Run jobs on IoT Edge
	Toll booth sensor data analysis
	Run a JavaScript UDA
	High-frequency trading
	Process IoT streaming data
	Threshold-based rules
	Process Kafka events
	Process Event Hubs data
	Process Azure SQL Database
	Geospatial scenarios

	Monitor
	Monitor jobs- Azure portal
	Monitor jobs- PowerShell
	Monitor jobs- Azure .NET SDK
	Monitor jobs- Visual Studio

	Automate
	Using .NET SDK
	Using Azure PowerShell
	Using API for IoT Edge jobs
	Export and deploy with Azure Resource Manager

	Visual Studio
	Install tools
	Test locally with sample data
	Test locally with live data
	View jobs in Visual Studio
	Debug queries using job diagram
	Develop an edge job
	Set up CI/CD pipeline

	Visual Studio Code
	Test locally with sample data
	Test locally with live data
	Set up CI/CD pipeline
	Explore jobs
	JobConfig.json fields

	Troubleshoot
	Input
	Output
	Query logic
	Activity and diagnostic logs
	Data errors

	Integrate with machine learning
	Sentiment analysis with ML models
	Anomaly detection
	Use REST APIs

	Debug using job diagram
	Scale with ML functions

	Stream Analytics Query Language
	Stream Analytics Query Language overview
	Built-in Functions
	Built-in Functions Overview
	Aggregate Functions
	Aggregate Functions Overview
	AVG
	COUNT
	Collect
	CollectTOP
	MAX
	MIN
	Percentile_Cont
	Percentile_Disc
	STDEV
	STDEVP
	SUM
	TopOne
	VAR
	VARP

	Analytic Functions
	Analytic Functions Overview
	AnomalyDetection_SpikeAndDip
	AnomalyDetection_ChangePoint
	ISFIRST
	LAG
	LAST

	Array Functions
	Array Functions Overview
	GetArrayLength
	GetArrayElement
	GetArrayElements

	Conversion Functions
	Conversion Functions Overview
	CAST
	GetType
	TRY_CAST

	Date and Time Functions
	Date and Time Functions Overview
	DATEADD
	DATEDIFF
	DATENAME
	DATEPART
	DATETIMEFROMPARTS
	DAY
	MONTH
	YEAR

	GeoSpatial Functions
	GeoSpatial Functions Overview
	CreateLineString
	CreatePoint
	CreatePolygon
	ST_DISTANCE
	ST_OVERLAPS
	ST_INTERSECTS
	ST_WITHIN

	Input Metadata Functions
	Input Metadata Functions Overview
	GetMetadataPropertyValue

	Mathematical Functions
	Mathematical Functions Overview
	ABS
	CEILING
	EXP
	FLOOR
	POWER
	ROUND
	SIGN
	SQUARE
	SQRT

	Record Functions
	Record Functions Overview
	GetRecordProperties
	GetRecordPropertyValue

	String Functions
	String Functions Overview
	CHARINDEX
	CONCAT
	LEN
	LOWER
	PATINDEX
	REGEXMATCH
	REPLACE
	SUBSTRING
	UPPER

	Windowing Functions
	Windowing Functions Overview
	Hopping Window
	Session Window
	Sliding Window
	Tumbling Window
	Aggregate Windowing functions

	Data Types
	Data Types Overview
	Parsing JSON and AVRO data

	Query Language Elements
	Query Language Elements Overview
	APPLY
	CASE
	COALESCE
	CREATE TABLE
	FROM
	GROUP BY
	HAVING
	INTO
	JOIN
	MATCH_RECOGNIZE
	Reference Data JOIN
	SELECT
	UNION
	WHERE
	WITH

	Time Management
	Time Management Overview
	System.Timestamp
	TIMESTAMP BY
	Time Skew Policies

	Event Delivery Guarantees

	Reference
	Azure PowerShell
	.NET
	REST
	Resource Manager template

	Resources
	Stream Analytics previews
	Azure Roadmap
	Blog
	Feedback forum
	Forum
	Pricing
	Pricing calculator
	Service updates
	Stack Overflow
	Videos
	Customer case studies
	Whitepaper - Real-time event processing

